Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3060-3068.DOI: 10.11772/j.issn.1001-9081.2021081484
• Data science and technology • Previous Articles Next Articles
Guangfu CHEN1,2, Haibo WANG3, Yanping LIAN1,2
Received:
2021-08-19
Revised:
2021-12-03
Accepted:
2021-12-08
Online:
2022-01-07
Published:
2022-10-10
Contact:
Guangfu CHEN
About author:
CHEN Guangfu, born in 1979, Ph. D. , lecturer. His research interests include link prediction, network representation.Supported by:
陈广福1,2, 王海波3, 连雁平1,2
通讯作者:
陈广福
作者简介:
第一联系人:陈广福(1979—),男,江西上饶人,讲师,博士,主要研究方向:链路预测、网络表示cgf21st@163.com基金资助:
CLC Number:
Guangfu CHEN, Haibo WANG, Yanping LIAN. Link prediction in directed network based on high-order self-included collaborative filtering[J]. Journal of Computer Applications, 2022, 42(10): 3060-3068.
陈广福, 王海波, 连雁平. 基于高阶自包含协同过滤的有向网络链路预测[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3060-3068.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021081484
网络 | 平均度 | 稀疏率 | ||||
---|---|---|---|---|---|---|
SM | 3 084 | 10 412 | 121 | 105 | 6.753 1 | 0.001 1 |
CHE | 7 301 | 65 053 | 140 | 52 | 17.823 4 | 0.001 2 |
WPL | 10 453 | 140 501 | 1 228 | 423 | 26.882 7 | 0.001 3 |
FIG | 2 239 | 6 452 | 19 | 14 | 2.881 6 | 0.001 3 |
AG | 6 541 | 51 127 | 722 | 86 | 15.632 2 | 0.001 1 |
CAL | 9 664 | 16 150 | 199 | 64 | 1.671 2 | 0.000 2 |
OPE | 2 939 | 30 501 | 236 | 37 | 0.438 6 | 0.003 5 |
BA | 3 783 | 24 186 | 398 | 90 | 6.393 3 | 0.001 7 |
ODL | 2 909 | 18 241 | 583 | 47 | 12.541 4 | 0.002 2 |
WV | 7 118 | 103 675 | 457 | 93 | 29.130 6 | 0.002 1 |
Tab. 1 Topological feature statistics of 10 real directed networks
网络 | 平均度 | 稀疏率 | ||||
---|---|---|---|---|---|---|
SM | 3 084 | 10 412 | 121 | 105 | 6.753 1 | 0.001 1 |
CHE | 7 301 | 65 053 | 140 | 52 | 17.823 4 | 0.001 2 |
WPL | 10 453 | 140 501 | 1 228 | 423 | 26.882 7 | 0.001 3 |
FIG | 2 239 | 6 452 | 19 | 14 | 2.881 6 | 0.001 3 |
AG | 6 541 | 51 127 | 722 | 86 | 15.632 2 | 0.001 1 |
CAL | 9 664 | 16 150 | 199 | 64 | 1.671 2 | 0.000 2 |
OPE | 2 939 | 30 501 | 236 | 37 | 0.438 6 | 0.003 5 |
BA | 3 783 | 24 186 | 398 | 90 | 6.393 3 | 0.001 7 |
ODL | 2 909 | 18 241 | 583 | 47 | 12.541 4 | 0.002 2 |
WV | 7 118 | 103 675 | 457 | 93 | 29.130 6 | 0.002 1 |
指标 | 数据集 | 平均值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SM | FIG | OPE | BA | ODL | AG | WV | CHE | CAL | WPL | ||
DCN | 0.892 | 0.703 | 0.969 | 0.837 | 0.824 | 0.878 | 0.921 | 0.785 | 0.692 | 0.915 | 0.842 |
DAA | 0.877 | 0.700 | 0.970 | 0.838 | 0.830 | 0.881 | 0.925 | 0.785 | 0.655 | 0.914 | 0.838 |
DRA | 0.896 | 0.707 | 0.972 | 0.836 | 0.826 | 0.879 | 0.924 | 0.789 | 0.700 | 0.916 | 0.845 |
Bifan | 0.941 | 0.980 | 0.964 | 0.931 | 0.947 | 0.968 | 0.987 | 0.903 | 0.951 | 0.975 | 0.955 |
IWR-DCN | 0.922 | 0.704 | 0.976 | 0.868 | 0.927 | 0.939 | 0.953 | 0.904 | 0.748 | 0.948 | 0.889 |
IWR-DAA | 0.904 | 0.729 | 0.977 | 0.868 | 0.925 | 0.940 | 0.950 | 0.897 | 0.707 | 0.951 | 0.885 |
IWR-DRA | 0.921 | 0.724 | 0.979 | 0.868 | 0.925 | 0.937 | 0.951 | 0.902 | 0.730 | 0.947 | 0.888 |
IWR-Bifan | 0.969 | 0.981 | 0.978 | 0.959 | 0.957 | 0.974 | 0.979 | 0.948 | 0.971 | 0.972 | 0.969 |
Jaccard | 0.891 | 0.705 | 0.966 | 0.824 | 0.829 | 0.881 | 0.927 | 0.786 | 0.702 | 0.916 | 0.843 |
HPI | 0.894 | 0.705 | 0.960 | 0.821 | 0.825 | 0.876 | 0.918 | 0.788 | 0.700 | 0.915 | 0.840 |
LP | 0.968 | 0.797 | 0.984 | 0.929 | 0.918 | 0.960 | 0.977 | 0.914 | 0.814 | 0.964 | 0.923 |
LO | 0.857 | 0.905 | 0.941 | 0.767 | 0.851 | 0.840 | 0.876 | 0.695 | 0.874 | 0.903 | 0.851 |
HSCF-DCN | 0.992 | 0.924 | 0.987 | 0.960 | 0.957 | 0.955 | 0.924 | 0.943 | 0.903 | 0.951 | 0.950 |
HSCF-DAA | 0.972 | 0.918 | 0.992 | 0.968 | 0.958 | 0.974 | 0.980 | 0.960 | 0.861 | 0.975 | 0.956 |
HSCF-DRA | 0.992 | 0.926 | 0.996 | 0.976 | 0.960 | 0.977 | 0.972 | 0.961 | 0.896 | 0.978 | 0.963 |
HSCF-Bifan | 0.987 | 0.992 | 0.963 | 0.944 | 0.958 | 0.969 | 0.981 | 0.926 | 0.996 | 0.969 | 0.969 |
Tab. 2 Comparison of AUC under difference indices
指标 | 数据集 | 平均值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SM | FIG | OPE | BA | ODL | AG | WV | CHE | CAL | WPL | ||
DCN | 0.892 | 0.703 | 0.969 | 0.837 | 0.824 | 0.878 | 0.921 | 0.785 | 0.692 | 0.915 | 0.842 |
DAA | 0.877 | 0.700 | 0.970 | 0.838 | 0.830 | 0.881 | 0.925 | 0.785 | 0.655 | 0.914 | 0.838 |
DRA | 0.896 | 0.707 | 0.972 | 0.836 | 0.826 | 0.879 | 0.924 | 0.789 | 0.700 | 0.916 | 0.845 |
Bifan | 0.941 | 0.980 | 0.964 | 0.931 | 0.947 | 0.968 | 0.987 | 0.903 | 0.951 | 0.975 | 0.955 |
IWR-DCN | 0.922 | 0.704 | 0.976 | 0.868 | 0.927 | 0.939 | 0.953 | 0.904 | 0.748 | 0.948 | 0.889 |
IWR-DAA | 0.904 | 0.729 | 0.977 | 0.868 | 0.925 | 0.940 | 0.950 | 0.897 | 0.707 | 0.951 | 0.885 |
IWR-DRA | 0.921 | 0.724 | 0.979 | 0.868 | 0.925 | 0.937 | 0.951 | 0.902 | 0.730 | 0.947 | 0.888 |
IWR-Bifan | 0.969 | 0.981 | 0.978 | 0.959 | 0.957 | 0.974 | 0.979 | 0.948 | 0.971 | 0.972 | 0.969 |
Jaccard | 0.891 | 0.705 | 0.966 | 0.824 | 0.829 | 0.881 | 0.927 | 0.786 | 0.702 | 0.916 | 0.843 |
HPI | 0.894 | 0.705 | 0.960 | 0.821 | 0.825 | 0.876 | 0.918 | 0.788 | 0.700 | 0.915 | 0.840 |
LP | 0.968 | 0.797 | 0.984 | 0.929 | 0.918 | 0.960 | 0.977 | 0.914 | 0.814 | 0.964 | 0.923 |
LO | 0.857 | 0.905 | 0.941 | 0.767 | 0.851 | 0.840 | 0.876 | 0.695 | 0.874 | 0.903 | 0.851 |
HSCF-DCN | 0.992 | 0.924 | 0.987 | 0.960 | 0.957 | 0.955 | 0.924 | 0.943 | 0.903 | 0.951 | 0.950 |
HSCF-DAA | 0.972 | 0.918 | 0.992 | 0.968 | 0.958 | 0.974 | 0.980 | 0.960 | 0.861 | 0.975 | 0.956 |
HSCF-DRA | 0.992 | 0.926 | 0.996 | 0.976 | 0.960 | 0.977 | 0.972 | 0.961 | 0.896 | 0.978 | 0.963 |
HSCF-Bifan | 0.987 | 0.992 | 0.963 | 0.944 | 0.958 | 0.969 | 0.981 | 0.926 | 0.996 | 0.969 | 0.969 |
指标 | 数据集 | 平均值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SM | FIG | OPE | BA | ODL | AG | WV | CHE | CAL | WPL | ||
DCN | 0.339 | 0.256 | 0.342 | 0.201 | 0.249 | 0.200 | 0.216 | 0.128 | 0.156 | 0.389 | 0.248 |
DAA | 0.412 | 0.233 | 0.654 | 0.451 | 0.322 | 0.201 | 0.541 | 0.340 | 0.156 | 0.522 | 0.383 |
DRA | 0.536 | 0.263 | 0.674 | 0.467 | 0.376 | 0.517 | 0.590 | 0.407 | 0.308 | 0.567 | 0.471 |
Bifan | 0.334 | 0.554 | 0.537 | 0.350 | 0.344 | 0.360 | 0.514 | 0.201 | 0.276 | 0.400 | 0.387 |
IWR-DCN | 0.560 | 0.313 | 0.705 | 0.595 | 0.625 | 0.634 | 0.664 | 0.599 | 0.339 | 0.646 | 0.568 |
IWR-DAA | 0.615 | 0.317 | 0.708 | 0.611 | 0.636 | 0.664 | 0.687 | 0.617 | 0.369 | 0.671 | 0.590 |
IWR-DRA | 0.627 | 0.372 | 0.719 | 0.611 | 0.636 | 0.665 | 0.689 | 0.623 | 0.405 | 0.669 | 0.602 |
IWR-Bifan | 0.701 | 0.667 | 0.794 | 0.803 | 0.828 | 0.706 | 0.724 | 0.679 | 0.617 | 0.812 | 0.733 |
Jaccard | 0.686 | 0.366 | 0.687 | 0.547 | 0.614 | 0.566 | 0.536 | 0.376 | 0.400 | 0.644 | 0.542 |
HPI | 0.694 | 0.396 | 0.773 | 0.587 | 0.587 | 0.615 | 0.570 | 0.431 | 0.460 | 0.671 | 0.578 |
LP | 0.404 | 0.354 | 0.642 | 0.456 | 0.350 | 0.423 | 0.482 | 0.331 | 0.201 | 0.450 | 0.409 |
LO | 0.602 | 0.594 | 0.685 | 0.619 | 0.593 | 0.592 | 0.600 | 0.558 | 0.582 | 0.654 | 0.608 |
HSCF-DCN | 0.711 | 0.616 | 0.882 | 0.879 | 0.836 | 0.822 | 0.791 | 0.855 | 0.582 | 0.865 | 0.784 |
HSCF-DAA | 0.727 | 0.626 | 0.886 | 0.884 | 0.843 | 0.835 | 0.823 | 0.862 | 0.563 | 0.874 | 0.792 |
HSCF-DRA | 0.747 | 0.611 | 0.888 | 0.885 | 0.841 | 0.832 | 0.822 | 0.856 | 0.593 | 0.871 | 0.795 |
HSCF-Bifan | 0.792 | 0.751 | 0.879 | 0.874 | 0.871 | 0.833 | 0.827 | 0.858 | 0.721 | 0.879 | 0.829 |
Tab. 3 Comparison of F?score under difference indices
指标 | 数据集 | 平均值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SM | FIG | OPE | BA | ODL | AG | WV | CHE | CAL | WPL | ||
DCN | 0.339 | 0.256 | 0.342 | 0.201 | 0.249 | 0.200 | 0.216 | 0.128 | 0.156 | 0.389 | 0.248 |
DAA | 0.412 | 0.233 | 0.654 | 0.451 | 0.322 | 0.201 | 0.541 | 0.340 | 0.156 | 0.522 | 0.383 |
DRA | 0.536 | 0.263 | 0.674 | 0.467 | 0.376 | 0.517 | 0.590 | 0.407 | 0.308 | 0.567 | 0.471 |
Bifan | 0.334 | 0.554 | 0.537 | 0.350 | 0.344 | 0.360 | 0.514 | 0.201 | 0.276 | 0.400 | 0.387 |
IWR-DCN | 0.560 | 0.313 | 0.705 | 0.595 | 0.625 | 0.634 | 0.664 | 0.599 | 0.339 | 0.646 | 0.568 |
IWR-DAA | 0.615 | 0.317 | 0.708 | 0.611 | 0.636 | 0.664 | 0.687 | 0.617 | 0.369 | 0.671 | 0.590 |
IWR-DRA | 0.627 | 0.372 | 0.719 | 0.611 | 0.636 | 0.665 | 0.689 | 0.623 | 0.405 | 0.669 | 0.602 |
IWR-Bifan | 0.701 | 0.667 | 0.794 | 0.803 | 0.828 | 0.706 | 0.724 | 0.679 | 0.617 | 0.812 | 0.733 |
Jaccard | 0.686 | 0.366 | 0.687 | 0.547 | 0.614 | 0.566 | 0.536 | 0.376 | 0.400 | 0.644 | 0.542 |
HPI | 0.694 | 0.396 | 0.773 | 0.587 | 0.587 | 0.615 | 0.570 | 0.431 | 0.460 | 0.671 | 0.578 |
LP | 0.404 | 0.354 | 0.642 | 0.456 | 0.350 | 0.423 | 0.482 | 0.331 | 0.201 | 0.450 | 0.409 |
LO | 0.602 | 0.594 | 0.685 | 0.619 | 0.593 | 0.592 | 0.600 | 0.558 | 0.582 | 0.654 | 0.608 |
HSCF-DCN | 0.711 | 0.616 | 0.882 | 0.879 | 0.836 | 0.822 | 0.791 | 0.855 | 0.582 | 0.865 | 0.784 |
HSCF-DAA | 0.727 | 0.626 | 0.886 | 0.884 | 0.843 | 0.835 | 0.823 | 0.862 | 0.563 | 0.874 | 0.792 |
HSCF-DRA | 0.747 | 0.611 | 0.888 | 0.885 | 0.841 | 0.832 | 0.822 | 0.856 | 0.593 | 0.871 | 0.795 |
HSCF-Bifan | 0.792 | 0.751 | 0.879 | 0.874 | 0.871 | 0.833 | 0.827 | 0.858 | 0.721 | 0.879 | 0.829 |
数据集 | 训练集比率 | DCN | DAA | DRA | Bifan | IRW-DCN | IRW-DAA | IRW-DRA | IRW-Bifan | Jaccard | HPI | LP | LO | HSCF-DCN | HSCF-DAA | HSCF-DRA | HSCF-Bifan |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SM | 0.3 | 0.721 | 0.701 | 0.721 | 0.583 | 0.716 | 0.697 | 0.719 | 0.756 | 0.720 | 0.719 | 0.859 | 0.489 | 0.973 | 0.940 | 0.973 | 0.963 |
0.5 | 0.718 | 0.701 | 0.723 | 0.579 | 0.717 | 0.696 | 0.719 | 0.756 | 0.722 | 0.723 | 0.858 | 0.491 | 0.970 | 0.937 | 0.972 | 0.959 | |
0.7 | 0.789 | 0.770 | 0.788 | 0.775 | 0.816 | 0.791 | 0.814 | 0.896 | 0.785 | 0.792 | 0.920 | 0.639 | 0.987 | 0.962 | 0.987 | 0.978 | |
FIG | 0.3 | 0.634 | 0.633 | 0.632 | 0.872 | 0.618 | 0.635 | 0.641 | 0.892 | 0.637 | 0.638 | 0.729 | 0.598 | 0.861 | 0.869 | 0.867 | 0.967 |
0.5 | 0.634 | 0.635 | 0.632 | 0.872 | 0.615 | 0.633 | 0.643 | 0.896 | 0.634 | 0.639 | 0.722 | 0.604 | 0.871 | 0.883 | 0.877 | 0.969 | |
0.7 | 0.635 | 0.636 | 0.636 | 0.877 | 0.623 | 0.640 | 0.641 | 0.890 | 0.634 | 0.632 | 0.721 | 0.599 | 0.869 | 0.877 | 0.894 | 0.965 | |
OPE | 0.3 | 0.733 | 0.725 | 0.729 | 0.890 | 0.873 | 0.867 | 0.873 | 0.971 | 0.732 | 0.728 | 0.921 | 0.725 | 0.974 | 0.972 | 0.982 | 0.968 |
0.5 | 0.892 | 0.893 | 0.892 | 0.949 | 0.956 | 0.951 | 0.955 | 0.978 | 0.891 | 0.885 | 0.971 | 0.851 | 0.983 | 0.984 | 0.991 | 0.966 | |
0.7 | 0.946 | 0.943 | 0.949 | 0.962 | 0.971 | 0.970 | 0.973 | 0.979 | 0.940 | 0.938 | 0.980 | 0.908 | 0.982 | 0.986 | 0.992 | 0.958 | |
ODL | 0.3 | 0.558 | 0.548 | 0.557 | 0.635 | 0.626 | 0.602 | 0.620 | 0.762 | 0.558 | 0.555 | 0.613 | 0.546 | 0.768 | 0.739 | 0.772 | 0.875 |
0.5 | 0.653 | 0.652 | 0.655 | 0.837 | 0.773 | 0.769 | 0.775 | 0.910 | 0.655 | 0.655 | 0.775 | 0.701 | 0.907 | 0.906 | 0.911 | 0.943 | |
0.7 | 0.753 | 0.750 | 0.755 | 0.916 | 0.873 | 0.862 | 0.868 | 0.944 | 0.753 | 0.755 | 0.869 | 0.791 | 0.944 | 0.944 | 0.941 | 0.959 | |
BA | 0.3 | 0.537 | 0.530 | 0.537 | 0.580 | 0.597 | 0.593 | 0.600 | 0.805 | 0.536 | 0.534 | 0.623 | 0.477 | 0.839 | 0.820 | 0.853 | 0.831 |
0.5 | 0.689 | 0.686 | 0.684 | 0.851 | 0.787 | 0.786 | 0.785 | 0.936 | 0.680 | 0.680 | 0.858 | 0.668 | 0.918 | 0.924 | 0.940 | 0.916 | |
0.7 | 0.780 | 0.783 | 0.782 | 0.910 | 0.846 | 0.844 | 0.846 | 0.948 | 0.773 | 0.769 | 0.911 | 0.738 | 0.935 | 0.946 | 0.960 | 0.923 | |
AG | 0.3 | 0.610 | 0.600 | 0.605 | 0.787 | 0.725 | 0.708 | 0.722 | 0.901 | 0.607 | 0.605 | 0.742 | 0.588 | 0.921 | 0.923 | 0.927 | 0.949 |
0.5 | 0.734 | 0.735 | 0.733 | 0.921 | 0.854 | 0.839 | 0.849 | 0.957 | 0.735 | 0.733 | 0.891 | 0.736 | 0.960 | 0.960 | 0.965 | 0.961 | |
0.7 | 0.820 | 0.817 | 0.821 | 0.952 | 0.912 | 0.905 | 0.907 | 0.971 | 0.819 | 0.819 | 0.943 | 0.786 | 0.963 | 0.972 | 0.969 | 0.967 | |
CAL | 0.3 | 0.624 | 0.580 | 0.622 | 0.724 | 0.629 | 0.595 | 0.634 | 0.796 | 0.625 | 0.622 | 0.709 | 0.583 | 0.838 | 0.761 | 0.822 | 0.932 |
0.5 | 0.624 | 0.588 | 0.620 | 0.717 | 0.634 | 0.597 | 0.631 | 0.793 | 0.630 | 0.620 | 0.714 | 0.586 | 0.815 | 0.755 | 0.826 | 0.936 | |
0.7 | 0.625 | 0.584 | 0.621 | 0.723 | 0.631 | 0.602 | 0.635 | 0.794 | 0.618 | 0.621 | 0.716 | 0.585 | 0.810 | 0.757 | 0.824 | 0.939 | |
WV | 0.3 | 0.674 | 0.673 | 0.674 | 0.965 | 0.786 | 0.777 | 0.784 | 0.970 | 0.673 | 0.674 | 0.880 | 0.712 | 0.933 | 0.942 | 0.941 | 0.975 |
0.5 | 0.808 | 0.812 | 0.810 | 0.983 | 0.889 | 0.887 | 0.889 | 0.976 | 0.807 | 0.808 | 0.952 | 0.792 | 0.947 | 0.967 | 0.960 | 0.978 | |
0.7 | 0.884 | 0.880 | 0.885 | 0.986 | 0.929 | 0.927 | 0.931 | 0.977 | 0.879 | 0.880 | 0.973 | 0.836 | 0.947 | 0.974 | 0.970 | 0.979 | |
CHE | 0.3 | 0.561 | 0.559 | 0.564 | 0.643 | 0.661 | 0.655 | 0.662 | 0.814 | 0.560 | 0.564 | 0.669 | 0.511 | 0.893 | 0.888 | 0.882 | 0.899 |
0.5 | 0.653 | 0.657 | 0.656 | 0.788 | 0.797 | 0.796 | 0.799 | 0.915 | 0.657 | 0.655 | 0.823 | 0.593 | 0.937 | 0.931 | 0.941 | 0.925 | |
0.7 | 0.736 | 0.726 | 0.736 | 0.866 | 0.865 | 0.863 | 0.865 | 0.942 | 0.735 | 0.734 | 0.880 | 0.651 | 0.948 | 0.948 | 0.954 | 0.929 | |
WPL | 0.3 | 0.741 | 0.736 | 0.738 | 0.877 | 0.830 | 0.826 | 0.827 | 0.938 | 0.735 | 0.738 | 0.851 | 0.733 | 0.942 | 0.941 | 0.945 | 0.956 |
0.5 | 0.845 | 0.833 | 0.839 | 0.947 | 0.896 | 0.895 | 0.899 | 0.966 | 0.834 | 0.839 | 0.923 | 0.843 | 0.957 | 0.964 | 0.967 | 0.968 | |
0.7 | 0.885 | 0.884 | 0.888 | 0.968 | 0.930 | 0.927 | 0.928 | 0.971 | 0.881 | 0.887 | 0.952 | 0.884 | 0.957 | 0.964 | 0.974 | 0.969 |
Tab. 4 AUC corresponding to different training dataset rate
数据集 | 训练集比率 | DCN | DAA | DRA | Bifan | IRW-DCN | IRW-DAA | IRW-DRA | IRW-Bifan | Jaccard | HPI | LP | LO | HSCF-DCN | HSCF-DAA | HSCF-DRA | HSCF-Bifan |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SM | 0.3 | 0.721 | 0.701 | 0.721 | 0.583 | 0.716 | 0.697 | 0.719 | 0.756 | 0.720 | 0.719 | 0.859 | 0.489 | 0.973 | 0.940 | 0.973 | 0.963 |
0.5 | 0.718 | 0.701 | 0.723 | 0.579 | 0.717 | 0.696 | 0.719 | 0.756 | 0.722 | 0.723 | 0.858 | 0.491 | 0.970 | 0.937 | 0.972 | 0.959 | |
0.7 | 0.789 | 0.770 | 0.788 | 0.775 | 0.816 | 0.791 | 0.814 | 0.896 | 0.785 | 0.792 | 0.920 | 0.639 | 0.987 | 0.962 | 0.987 | 0.978 | |
FIG | 0.3 | 0.634 | 0.633 | 0.632 | 0.872 | 0.618 | 0.635 | 0.641 | 0.892 | 0.637 | 0.638 | 0.729 | 0.598 | 0.861 | 0.869 | 0.867 | 0.967 |
0.5 | 0.634 | 0.635 | 0.632 | 0.872 | 0.615 | 0.633 | 0.643 | 0.896 | 0.634 | 0.639 | 0.722 | 0.604 | 0.871 | 0.883 | 0.877 | 0.969 | |
0.7 | 0.635 | 0.636 | 0.636 | 0.877 | 0.623 | 0.640 | 0.641 | 0.890 | 0.634 | 0.632 | 0.721 | 0.599 | 0.869 | 0.877 | 0.894 | 0.965 | |
OPE | 0.3 | 0.733 | 0.725 | 0.729 | 0.890 | 0.873 | 0.867 | 0.873 | 0.971 | 0.732 | 0.728 | 0.921 | 0.725 | 0.974 | 0.972 | 0.982 | 0.968 |
0.5 | 0.892 | 0.893 | 0.892 | 0.949 | 0.956 | 0.951 | 0.955 | 0.978 | 0.891 | 0.885 | 0.971 | 0.851 | 0.983 | 0.984 | 0.991 | 0.966 | |
0.7 | 0.946 | 0.943 | 0.949 | 0.962 | 0.971 | 0.970 | 0.973 | 0.979 | 0.940 | 0.938 | 0.980 | 0.908 | 0.982 | 0.986 | 0.992 | 0.958 | |
ODL | 0.3 | 0.558 | 0.548 | 0.557 | 0.635 | 0.626 | 0.602 | 0.620 | 0.762 | 0.558 | 0.555 | 0.613 | 0.546 | 0.768 | 0.739 | 0.772 | 0.875 |
0.5 | 0.653 | 0.652 | 0.655 | 0.837 | 0.773 | 0.769 | 0.775 | 0.910 | 0.655 | 0.655 | 0.775 | 0.701 | 0.907 | 0.906 | 0.911 | 0.943 | |
0.7 | 0.753 | 0.750 | 0.755 | 0.916 | 0.873 | 0.862 | 0.868 | 0.944 | 0.753 | 0.755 | 0.869 | 0.791 | 0.944 | 0.944 | 0.941 | 0.959 | |
BA | 0.3 | 0.537 | 0.530 | 0.537 | 0.580 | 0.597 | 0.593 | 0.600 | 0.805 | 0.536 | 0.534 | 0.623 | 0.477 | 0.839 | 0.820 | 0.853 | 0.831 |
0.5 | 0.689 | 0.686 | 0.684 | 0.851 | 0.787 | 0.786 | 0.785 | 0.936 | 0.680 | 0.680 | 0.858 | 0.668 | 0.918 | 0.924 | 0.940 | 0.916 | |
0.7 | 0.780 | 0.783 | 0.782 | 0.910 | 0.846 | 0.844 | 0.846 | 0.948 | 0.773 | 0.769 | 0.911 | 0.738 | 0.935 | 0.946 | 0.960 | 0.923 | |
AG | 0.3 | 0.610 | 0.600 | 0.605 | 0.787 | 0.725 | 0.708 | 0.722 | 0.901 | 0.607 | 0.605 | 0.742 | 0.588 | 0.921 | 0.923 | 0.927 | 0.949 |
0.5 | 0.734 | 0.735 | 0.733 | 0.921 | 0.854 | 0.839 | 0.849 | 0.957 | 0.735 | 0.733 | 0.891 | 0.736 | 0.960 | 0.960 | 0.965 | 0.961 | |
0.7 | 0.820 | 0.817 | 0.821 | 0.952 | 0.912 | 0.905 | 0.907 | 0.971 | 0.819 | 0.819 | 0.943 | 0.786 | 0.963 | 0.972 | 0.969 | 0.967 | |
CAL | 0.3 | 0.624 | 0.580 | 0.622 | 0.724 | 0.629 | 0.595 | 0.634 | 0.796 | 0.625 | 0.622 | 0.709 | 0.583 | 0.838 | 0.761 | 0.822 | 0.932 |
0.5 | 0.624 | 0.588 | 0.620 | 0.717 | 0.634 | 0.597 | 0.631 | 0.793 | 0.630 | 0.620 | 0.714 | 0.586 | 0.815 | 0.755 | 0.826 | 0.936 | |
0.7 | 0.625 | 0.584 | 0.621 | 0.723 | 0.631 | 0.602 | 0.635 | 0.794 | 0.618 | 0.621 | 0.716 | 0.585 | 0.810 | 0.757 | 0.824 | 0.939 | |
WV | 0.3 | 0.674 | 0.673 | 0.674 | 0.965 | 0.786 | 0.777 | 0.784 | 0.970 | 0.673 | 0.674 | 0.880 | 0.712 | 0.933 | 0.942 | 0.941 | 0.975 |
0.5 | 0.808 | 0.812 | 0.810 | 0.983 | 0.889 | 0.887 | 0.889 | 0.976 | 0.807 | 0.808 | 0.952 | 0.792 | 0.947 | 0.967 | 0.960 | 0.978 | |
0.7 | 0.884 | 0.880 | 0.885 | 0.986 | 0.929 | 0.927 | 0.931 | 0.977 | 0.879 | 0.880 | 0.973 | 0.836 | 0.947 | 0.974 | 0.970 | 0.979 | |
CHE | 0.3 | 0.561 | 0.559 | 0.564 | 0.643 | 0.661 | 0.655 | 0.662 | 0.814 | 0.560 | 0.564 | 0.669 | 0.511 | 0.893 | 0.888 | 0.882 | 0.899 |
0.5 | 0.653 | 0.657 | 0.656 | 0.788 | 0.797 | 0.796 | 0.799 | 0.915 | 0.657 | 0.655 | 0.823 | 0.593 | 0.937 | 0.931 | 0.941 | 0.925 | |
0.7 | 0.736 | 0.726 | 0.736 | 0.866 | 0.865 | 0.863 | 0.865 | 0.942 | 0.735 | 0.734 | 0.880 | 0.651 | 0.948 | 0.948 | 0.954 | 0.929 | |
WPL | 0.3 | 0.741 | 0.736 | 0.738 | 0.877 | 0.830 | 0.826 | 0.827 | 0.938 | 0.735 | 0.738 | 0.851 | 0.733 | 0.942 | 0.941 | 0.945 | 0.956 |
0.5 | 0.845 | 0.833 | 0.839 | 0.947 | 0.896 | 0.895 | 0.899 | 0.966 | 0.834 | 0.839 | 0.923 | 0.843 | 0.957 | 0.964 | 0.967 | 0.968 | |
0.7 | 0.885 | 0.884 | 0.888 | 0.968 | 0.930 | 0.927 | 0.928 | 0.971 | 0.881 | 0.887 | 0.952 | 0.884 | 0.957 | 0.964 | 0.974 | 0.969 |
数据集 | 训练集比率 | DCN | DAA | DRA | Bifan | IRW-DCN | IRW-DAA | IRW-DRA | IRW-Bifan | Jaccard | HPI | LP | LO | HSCF-DCN | HSCF-DAA | HSCF-DRA | HSCF-Bifan |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SM | 0.3 | 0.173 | 0.239 | 0.295 | 0.049 | 0.449 | 0.284 | 0.356 | 0.385 | 0.449 | 0.489 | 0.374 | 0.475 | 0.796 | 0.749 | 0.777 | 0.740 |
0.5 | 0.176 | 0.240 | 0.296 | 0.048 | 0.440 | 0.275 | 0.355 | 0.384 | 0.451 | 0.489 | 0.374 | 0.475 | 0.795 | 0.748 | 0.779 | 0.739 | |
0.7 | 0.232 | 0.287 | 0.358 | 0.120 | 0.400 | 0.456 | 0.486 | 0.537 | 0.540 | 0.575 | 0.364 | 0.520 | 0.765 | 0.745 | 0.768 | 0.760 | |
FIG | 0.3 | 0.191 | 0.194 | 0.198 | 0.268 | 0.267 | 0.217 | 0.237 | 0.475 | 0.249 | 0.294 | 0.295 | 0.495 | 0.557 | 0.577 | 0.561 | 0.702 |
0.5 | 0.192 | 0.191 | 0.195 | 0.273 | 0.254 | 0.232 | 0.238 | 0.466 | 0.247 | 0.300 | 0.288 | 0.496 | 0.569 | 0.567 | 0.554 | 0.703 | |
0.7 | 0.195 | 0.196 | 0.199 | 0.270 | 0.269 | 0.242 | 0.221 | 0.465 | 0.246 | 0.293 | 0.287 | 0.495 | 0.554 | 0.582 | 0.564 | 0.720 | |
OPE | 0.3 | 0.164 | 0.169 | 0.237 | 0.171 | 0.488 | 0.516 | 0.530 | 0.663 | 0.336 | 0.427 | 0.238 | 0.565 | 0.850 | 0.851 | 0.857 | 0.858 |
0.5 | 0.241 | 0.460 | 0.475 | 0.267 | 0.601 | 0.621 | 0.629 | 0.698 | 0.492 | 0.625 | 0.393 | 0.635 | 0.873 | 0.874 | 0.877 | 0.872 | |
0.7 | 0.277 | 0.591 | 0.577 | 0.346 | 0.636 | 0.649 | 0.657 | 0.712 | 0.564 | 0.705 | 0.526 | 0.666 | 0.879 | 0.882 | 0.884 | 0.875 | |
ODL | 0.3 | 0.058 | 0.065 | 0.088 | 0.077 | 0.219 | 0.193 | 0.219 | 0.405 | 0.138 | 0.158 | 0.088 | 0.496 | 0.488 | 0.469 | 0.500 | 0.701 |
0.5 | 0.115 | 0.110 | 0.168 | 0.183 | 0.388 | 0.396 | 0.399 | 0.618 | 0.310 | 0.332 | 0.188 | 0.557 | 0.756 | 0.768 | 0.765 | 0.854 | |
0.7 | 0.180 | 0.192 | 0.237 | 0.246 | 0.489 | 0.503 | 0.508 | 0.686 | 0.460 | 0.445 | 0.255 | 0.594 | 0.826 | 0.829 | 0.827 | 0.869 | |
BA | 0.3 | 0.032 | 0.044 | 0.062 | 0.061 | 0.198 | 0.186 | 0.195 | 0.464 | 0.100 | 0.110 | 0.074 | 0.479 | 0.738 | 0.737 | 0.754 | 0.769 |
0.5 | 0.111 | 0.171 | 0.211 | 0.174 | 0.419 | 0.441 | 0.446 | 0.657 | 0.326 | 0.383 | 0.196 | 0.553 | 0.854 | 0.858 | 0.866 | 0.859 | |
0.7 | 0.159 | 0.318 | 0.339 | 0.240 | 0.498 | 0.518 | 0.523 | 0.693 | 0.421 | 0.500 | 0.309 | 0.582 | 0.867 | 0.872 | 0.876 | 0.865 | |
AG | 0.3 | 0.062 | 0.087 | 0.139 | 0.113 | 0.356 | 0.350 | 0.364 | 0.562 | 0.255 | 0.267 | 0.103 | 0.503 | 0.745 | 0.753 | 0.722 | 0.800 |
0.5 | 0.108 | 0.201 | 0.281 | 0.174 | 0.501 | 0.528 | 0.535 | 0.660 | 0.445 | 0.445 | 0.204 | 0.550 | 0.811 | 0.814 | 0.805 | 0.826 | |
0.7 | 0.131 | 0.334 | 0.411 | 0.245 | 0.579 | 0.610 | 0.618 | 0.692 | 0.518 | 0.547 | 0.282 | 0.573 | 0.823 | 0.827 | 0.825 | 0.832 |
Tab. 5 F?score corresponding todifferent training dataset rate
数据集 | 训练集比率 | DCN | DAA | DRA | Bifan | IRW-DCN | IRW-DAA | IRW-DRA | IRW-Bifan | Jaccard | HPI | LP | LO | HSCF-DCN | HSCF-DAA | HSCF-DRA | HSCF-Bifan |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SM | 0.3 | 0.173 | 0.239 | 0.295 | 0.049 | 0.449 | 0.284 | 0.356 | 0.385 | 0.449 | 0.489 | 0.374 | 0.475 | 0.796 | 0.749 | 0.777 | 0.740 |
0.5 | 0.176 | 0.240 | 0.296 | 0.048 | 0.440 | 0.275 | 0.355 | 0.384 | 0.451 | 0.489 | 0.374 | 0.475 | 0.795 | 0.748 | 0.779 | 0.739 | |
0.7 | 0.232 | 0.287 | 0.358 | 0.120 | 0.400 | 0.456 | 0.486 | 0.537 | 0.540 | 0.575 | 0.364 | 0.520 | 0.765 | 0.745 | 0.768 | 0.760 | |
FIG | 0.3 | 0.191 | 0.194 | 0.198 | 0.268 | 0.267 | 0.217 | 0.237 | 0.475 | 0.249 | 0.294 | 0.295 | 0.495 | 0.557 | 0.577 | 0.561 | 0.702 |
0.5 | 0.192 | 0.191 | 0.195 | 0.273 | 0.254 | 0.232 | 0.238 | 0.466 | 0.247 | 0.300 | 0.288 | 0.496 | 0.569 | 0.567 | 0.554 | 0.703 | |
0.7 | 0.195 | 0.196 | 0.199 | 0.270 | 0.269 | 0.242 | 0.221 | 0.465 | 0.246 | 0.293 | 0.287 | 0.495 | 0.554 | 0.582 | 0.564 | 0.720 | |
OPE | 0.3 | 0.164 | 0.169 | 0.237 | 0.171 | 0.488 | 0.516 | 0.530 | 0.663 | 0.336 | 0.427 | 0.238 | 0.565 | 0.850 | 0.851 | 0.857 | 0.858 |
0.5 | 0.241 | 0.460 | 0.475 | 0.267 | 0.601 | 0.621 | 0.629 | 0.698 | 0.492 | 0.625 | 0.393 | 0.635 | 0.873 | 0.874 | 0.877 | 0.872 | |
0.7 | 0.277 | 0.591 | 0.577 | 0.346 | 0.636 | 0.649 | 0.657 | 0.712 | 0.564 | 0.705 | 0.526 | 0.666 | 0.879 | 0.882 | 0.884 | 0.875 | |
ODL | 0.3 | 0.058 | 0.065 | 0.088 | 0.077 | 0.219 | 0.193 | 0.219 | 0.405 | 0.138 | 0.158 | 0.088 | 0.496 | 0.488 | 0.469 | 0.500 | 0.701 |
0.5 | 0.115 | 0.110 | 0.168 | 0.183 | 0.388 | 0.396 | 0.399 | 0.618 | 0.310 | 0.332 | 0.188 | 0.557 | 0.756 | 0.768 | 0.765 | 0.854 | |
0.7 | 0.180 | 0.192 | 0.237 | 0.246 | 0.489 | 0.503 | 0.508 | 0.686 | 0.460 | 0.445 | 0.255 | 0.594 | 0.826 | 0.829 | 0.827 | 0.869 | |
BA | 0.3 | 0.032 | 0.044 | 0.062 | 0.061 | 0.198 | 0.186 | 0.195 | 0.464 | 0.100 | 0.110 | 0.074 | 0.479 | 0.738 | 0.737 | 0.754 | 0.769 |
0.5 | 0.111 | 0.171 | 0.211 | 0.174 | 0.419 | 0.441 | 0.446 | 0.657 | 0.326 | 0.383 | 0.196 | 0.553 | 0.854 | 0.858 | 0.866 | 0.859 | |
0.7 | 0.159 | 0.318 | 0.339 | 0.240 | 0.498 | 0.518 | 0.523 | 0.693 | 0.421 | 0.500 | 0.309 | 0.582 | 0.867 | 0.872 | 0.876 | 0.865 | |
AG | 0.3 | 0.062 | 0.087 | 0.139 | 0.113 | 0.356 | 0.350 | 0.364 | 0.562 | 0.255 | 0.267 | 0.103 | 0.503 | 0.745 | 0.753 | 0.722 | 0.800 |
0.5 | 0.108 | 0.201 | 0.281 | 0.174 | 0.501 | 0.528 | 0.535 | 0.660 | 0.445 | 0.445 | 0.204 | 0.550 | 0.811 | 0.814 | 0.805 | 0.826 | |
0.7 | 0.131 | 0.334 | 0.411 | 0.245 | 0.579 | 0.610 | 0.618 | 0.692 | 0.518 | 0.547 | 0.282 | 0.573 | 0.823 | 0.827 | 0.825 | 0.832 |
1 | 李艳丽,周涛. 链路预测中的局部相似性指标[J]. 电子科技大学学报, 2021, 50(3):422-427. 10.12178/1001-0548.2021062 |
LI Y L, ZHOU T. Local similarity index in link prediction[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(3):422-427. 10.12178/1001-0548.2021062 | |
2 | HUANG Z, ZENG D D. A link prediction approach to anomalous email detection[C]// Proceedings of the 2006 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2006: 1131-1136. 10.1109/icsmc.2006.384552 |
3 | HUO Z P, HUANG X, HU X. Link prediction with personalized social influence[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 2289-2296. 10.1609/aaai.v32i1.11892 |
4 | YU S Q, ZHAO M H, FU C B, et al. Target defense against link-prediction-based attacks via evolutionary perturbations[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(2): 754-767. |
5 | 赵学磊,季新生,刘树新,等. 有向网络链路预测研究进展[J]. 信息工程大学学报, 2019, 20(6): 658-663, 677. |
ZHAO X L, JI X S, LIU S X, et al. Survey of link prediction for directed network[J]. Journal of Information Engineering University, 2019, 20(6): 658-663, 677. | |
6 | SCHALL D. Link prediction in directed social networks[J]. Social Network Analysis and Mining, 2014, 4(1): No.157. 10.1007/s13278-014-0157-9 |
7 | BÜTÜN E, KAYA M. A pattern based supervised link prediction in directed complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 525: 1136-1145. 10.1016/j.physa.2019.04.015 |
8 | ZHANG X, ZHAO C L, WANG X J, et al. Identifying missing and spurious interactions in directed networks[J]. International Journal of Distributed Sensor Networks, 2015, 11(9): No.507386. 10.1155/2015/507386 |
9 | BÜTÜN E, KAYA M, ALHAJJ R. Extension of neighbor-based link prediction methods for directed, weighted and temporal social networks[J]. Information Sciences, 2018, 463/464: 152-165. 10.1016/j.ins.2018.06.051 |
10 | SHANG K K, SMALL M, YAN W S. Link direction for link prediction[J]. Physica A: Statistical Mechanics and its Applications, 2017, 469: 767-776. 10.1016/j.physa.2016.11.129 |
11 | ZHANG Q M, LÜ L Y, WANG W Q, et al. Potential theory for directed networks[J]. PLoS ONE, 2013, 8(2): No.e55437. 10.1371/journal.pone.0055437 |
12 | LI J S, PENG J H, LIU S X, et al. Link prediction in directed networks utilizing the role of reciprocal links[J]. IEEE Access, 2020, 8: 28668-28680. 10.1109/access.2020.2972072 |
13 | PECH R, HAO D, LEE Y L, et al. Link prediction via linear optimization[J]. Physica A: Statistical Mechanics and its Applications, 2019, 528: No.121319. 10.1016/j.physa.2019.121319 |
14 | 李劲松,彭建华,刘树新,等. 一种基于线性规划的有向网络链路预测方法[J]. 电子与信息学报, 2020, 42(10): 2394-2402. 10.11999/JEIT190731 |
LI J S, PENG J H, LIU S X, et al. A link prediction method in directed networks via linear programming[J]. Journal of Electronics and Information Technology, 2020, 42(10): 2394-2402. 10.11999/JEIT190731 | |
15 | CHEN G F, XU C, WANG J Y, et al. Nonnegative matrix factorization for link prediction in directed complex networks using PageRank and asymmetric link clustering information[J]. Expert Systems with Applications, 2020, 148: No.113290. 10.1016/j.eswa.2020.113290 |
16 | LEE Y L, ZHOU T. Collaborative filtering approach to link prediction[J]. Physica A: Statistical Mechanics and its Applications, 2021, 578: No.126107. 10.1016/j.physa.2021.126107 |
17 | CAO S S, LU W, XU Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 891-900. 10.1145/2806416.2806512 |
18 | HANLEY J A, McNEIL B J. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve[J]. Radiology, 1982, 143(1): 29-36. 10.1148/radiology.143.1.7063747 |
19 | WANG D S, PEDRESCHI D, SONG C M, et al. Human mobility, social ties, and link prediction[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 1100-1108. 10.1145/2020408.2020581 |
20 | KUNEGIS J. The KOBLENZ project[EB/OL]. [2020-10-10].. 10.1145/2487788.2488173 |
21 | LESKOVEC J, KREVL A. SNAP datasets: Stanford large network dataset collection[DB/OL]. (2014-06) [2020-10-10].. |
22 | ROSSI R A, AHMED N K. The network data repository with interactive graph analytics and visualization[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015:4292-4293. 10.1609/aaai.v29i1.9277 |
23 | YU Y, WANG X X. Link prediction in directed network and its application in microblog[J]. Mathematical Problems in Engineering, 2014, 2014: No.509282. 10.1155/2014/509282 |
[1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[2] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[3] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
[4] | Jingyi WANG, Chao LI, Heng SONG, Di LI, Junwu ZHU. Spectrum combinatorial auction mechanism based on random walk algorithm [J]. Journal of Computer Applications, 2023, 43(8): 2352-2357. |
[5] | Zhongping ZHANG, Xin GUO, Yuting ZHANG, Ruibo ZHANG. Outlier detection algorithm based on hologram stationary distribution factor [J]. Journal of Computer Applications, 2023, 43(6): 1705-1712. |
[6] | Keke WANG, Yu ZHU, Xiaoying WANG, Jianqiang HUANG, Tengfei CAO. Heterogeneous hypernetwork representation learning method with hyperedge constraint [J]. Journal of Computer Applications, 2023, 43(12): 3654-3661. |
[7] | Xiaohan YANG, Guosheng HAO, Xiehua ZHANG, Zihao YANG. Collaborative filtering algorithm based on collaborative training and Boosting [J]. Journal of Computer Applications, 2023, 43(10): 3136-3141. |
[8] | YUAN Lining, LIU Zhao. Graph representation learning by autoencoder with one-shot aggregation [J]. Journal of Computer Applications, 2023, 43(1): 8-14. |
[9] | Yuyu MENG, Jing GUO. Link prediction algorithm based on information entropy improved PCA model [J]. Journal of Computer Applications, 2022, 42(9): 2823-2829. |
[10] | Le ZHOU, Tingting DAI, Chun LI, Jun XIE, Boce CHU, Feng LI, Junyi ZHANG, Qiao LIU. Network representation learning model based on node attribute bipartite graph [J]. Journal of Computer Applications, 2022, 42(8): 2311-2318. |
[11] | Meng YU, Wentao HE, Xuchuan ZHOU, Mengtian CUI, Keqi WU, Wenjie ZHOU. Review of recommendation system [J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. |
[12] | Junhua GU, Rui WANG, Ningning LI, Suqi ZHANG. Knowledge graph attention network fusing collaborative filtering information [J]. Journal of Computer Applications, 2022, 42(4): 1087-1092. |
[13] | Xiaopeng YU, Ruhan HE, Jin HUANG, Junjie ZHANG, Xinrong HU. Knowledge graph embedding model based on improved Inception structure [J]. Journal of Computer Applications, 2022, 42(4): 1065-1071. |
[14] | CAI Biao, LI Ruicen, WU Yuanyuan. Impact and enhancement of similarity features on link prediction [J]. Journal of Computer Applications, 2021, 41(9): 2569-2577. |
[15] | TANG Andi, HAN Tong, XU Dengwu, XIE lei. Chaotic elite Harris hawks optimization algorithm [J]. Journal of Computer Applications, 2021, 41(8): 2265-2272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||