Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 3026-3035.DOI: 10.11772/j.issn.1001-9081.2024091273

• Frontier and comprehensive applications • Previous Articles    

Trajectory tracking algorithm for mobile robots based on geometric model predictive control

Songjian GU1,2, Fuxiang WU2, Xiangyang GAO2, Mengjie YANG3, Yibing ZHAN4, Jun CHENG2()   

  1. 1.Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology),Guilin Guangxi 541006,China
    2.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen Guangdong 518005,China
    3.Shine Technology Company Limited,Kunming Yunnan 650000,China
    4.JD Explore Academy,Beijing 100000,China
  • Received:2024-09-06 Revised:2024-11-29 Accepted:2024-12-02 Online:2025-01-15 Published:2025-09-10
  • Contact: Jun CHENG
  • About author:GU Songjian, born in 1998, M.S. candidate. His research interests include mobile robot control, embedded systems.
    WU Fuxiang, born in 1984, Ph. D., associate professor. His research interests include multimodal deep learning, image generation.
    GAO Xiangyang, born in 1982, M. S., senior engineer. His research interests include intelligent robots, embedded systems.
    YANG Mengjie, born in 1982, senior engineer. His research interests include artificial intelligence, smart cities, intelligent parks.
    ZHAN Yibing, born in 1990, Ph. D., associate research fellow. His research interests include multimodal learning, graph neural networks, large models.
  • Supported by:
    National Key Innovation 2030 — “New Generation Artificial Intelligence” Major Project(2021ZD0111700);National Natural Science Foundation of China(U21A20487);Yunnan Science & Technology Project(202305AF150152)

基于几何模型预测控制的移动机器人轨迹跟踪算法

古松健1,2, 吴福祥2, 高向阳2, 杨梦杰3, 詹忆冰4, 程俊2()   

  1. 1.广西高校先进制造与自动化技术重点实验室(桂林理工大学),广西 桂林 541006
    2.中国科学院 深圳先进技术研究院,广东 深圳 518055
    3.盛云科技有限公司,昆明 650000
    4.京东探索研究院,北京 100000
  • 通讯作者: 程俊
  • 作者简介:古松健(1998—),男,广东茂名人,硕士研究生,主要研究方向:移动机器人控制、嵌入式系统
    吴福祥(1984—),男,广东梅州人,副教授,博士,CCF会员,主要研究方向:多模态深度学习、图像生成
    高向阳(1982—),男,陕西咸阳人,高级工程师,硕士,主要研究方向:智能机器人、嵌入式系统
    杨梦杰(1982—),男,云南蒙自人,高级工程师,主要研究方向:人工智能、智慧城市、智慧园区
    詹忆冰(1990—),男,湖北荆门人,副研究员,博士,主要研究方向:多模态学习、图神经网络、大模型
  • 基金资助:
    国家科技创新2030—“新一代人工智能”重大项目(2021ZD0111700);国家自然科学基金资助项目(U21A20487);云南省科技人才与平台计划(院士专家工作站)(202305AF150152)

Abstract:

To address the pose deviation issues faced by Wheeled Mobile Robots (WMRs) during trajectory tracking due to inaccurate positioning and unknown disturbances, an Enhanced Particle Swarm Optimization Mixer (EPSO-Mixer) algorithm based on Geometric Model Predictive Control (GMPC) was proposed, aiming to enhance trajectory tracking performance of WMRs. Firstly, an Enhanced Particle Swarm Optimization (EPSO) algorithm was proposed on the basis of Particle Swarm Optimization (PSO) to accelerate convergence and improve optimization capabilities. Secondly, EPSO was used to improve GMPC by selecting optimal tracking parameters according to the current deviation level, so as to reduce trajectory tracking errors effectively. Finally, by integrating the Multi-Layer Perceptron Mixer (MLP-Mixer) architecture, EPSO-Mixer algorithm was proposed, thereby further enhancing search capability for the global optimum and generating more adaptive control strategies. Simulation results show that compared with nonlinear model predictive control and classic GMPC algorithms, EPSO-Mixer GMPC improves trajectory tracking performance of WMRs under pose deviation conditions effectively with errors reduced by 8.0% - 82.3% and mitigating vibration issues during motion significantly. These results indicate that EPSO-Mixer algorithm provides more effective control strategies, thereby reducing the complexity and time cost of parameter adjustment, and enhancing the adaptability of trajectory tracking control significantly.

Key words: Wheeled Mobile Robot (WMR), trajectory tracking, Particle Swarm Optimization (PSO), Multi-Layer Perceptron Mixer (MLP-Mixer), Geometric Model Predictive Control (GMPC)

摘要:

针对轮式移动机器人(WMR)在轨迹跟踪过程中因定位失准和未知干扰等因素导致的位姿偏移问题,提出一种基于几何模型预测控制(GMPC)的增强型粒子群优化混合器(EPSO-Mixer)算法,旨在提升WMR的轨迹跟踪性能。首先,以粒子群优化(PSO)为基础,提出一种增强型粒子群优化(EPSO)算法,以加快收敛并提升优化能力;其次,利用EPSO对GMPC进行改进,根据当前偏移程度筛选出最优跟踪参数,以有效地减小轨迹跟踪误差;最后,结合混合多层感知器(MLP-Mixer)架构,提出EPSO-Mixer算法,从而进一步增强对全局最优解的搜索能力,同时生成更具适应性的控制策略。仿真实验结果表明,与非线性模型预测控制和经典GMPC算法相比,EPSO-Mixer GMPC有效提升了WMR在位姿偏移条件下的轨迹跟踪性能,误差减小8.0%~82.3%,并显著改善了运动中的振动问题。可见,EPSO-Mixer算法能够提供更有效的控制策略,不仅降低了参数调整的难度与时间成本,而且显著增强了轨迹跟踪控制的自适应能力。

关键词: 轮式移动机器人, 轨迹跟踪, 粒子群优化, 混合多层感知器, 几何模型预测控制

CLC Number: