Journal of Computer Applications ›› 0, Vol. ›› Issue (): 35-43.DOI: 10.11772/j.issn.1001-9081.2024050594
• Artificial intelligence • Previous Articles Next Articles
Wei ZHANG1, Zhuyu CHU1, Xueqi CHEN1, Xuehui FU1, Chenchen WANG2(), Chen LI2, Haiyan WU2
Received:
2024-05-06
Revised:
2024-07-10
Accepted:
2024-07-11
Online:
2025-01-24
Published:
2024-12-31
Contact:
Chenchen WANG
章巍1, 储著宇1, 陈学奇1, 傅学辉1, 王晨晨2(), 李晨2, 吴海燕2
通讯作者:
王晨晨
作者简介:
章巍(1973—),男,浙江宁波人,高级工程师,硕士,主要研究方向:发电系统规划与建设、电力系统与人工智能基金资助:
CLC Number:
Wei ZHANG, Zhuyu CHU, Xueqi CHEN, Xuehui FU, Chenchen WANG, Chen LI, Haiyan WU. Aspect-based sentiment analysis with syntactic prompt[J]. Journal of Computer Applications, 0, (): 35-43.
章巍, 储著宇, 陈学奇, 傅学辉, 王晨晨, 李晨, 吴海燕. 基于句法提示的细粒度情感分析[J]. 《计算机应用》唯一官方网站, 0, (): 35-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050594
词 | 短语路径 | 词 | 短语路径 |
---|---|---|---|
Apple | S→S→NP→NNP | the | S→S→NP→DT |
has | S→S→VP→VBZ | price | S→S→NP→NN |
higher | S→S→VP→NP→JJR | … | … |
resolution | S→S→VP→NP→NN | expensive | S→S→VP→ADJP→JJ |
but | S→CC |
词 | 短语路径 | 词 | 短语路径 |
---|---|---|---|
Apple | S→S→NP→NNP | the | S→S→NP→DT |
has | S→S→VP→VBZ | price | S→S→NP→NN |
higher | S→S→VP→NP→JJR | … | … |
resolution | S→S→VP→NP→NN | expensive | S→S→VP→ADJP→JJ |
but | S→CC |
词 | 依存路径 | 词 | 依存路径 |
---|---|---|---|
Apple | ROOT→nsubj | the | ROOT→obj→nsubj→det |
has | ROOT | price | ROOT→obj→nsubj |
higher | ROOT→obj→amod | … | … |
resolution | ROOT→obj | expensive | ROOT→obj |
but | ROOT→obj→cc |
词 | 依存路径 | 词 | 依存路径 |
---|---|---|---|
Apple | ROOT→nsubj | the | ROOT→obj→nsubj→det |
has | ROOT | price | ROOT→obj→nsubj |
higher | ROOT→obj→amod | … | … |
resolution | ROOT→obj | expensive | ROOT→obj |
but | ROOT→obj→cc |
数据集 | 正向 (pos) | 中性 (neu) | 负向 (neg) | |||
---|---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
Restaurant | 2 164 | 727 | 637 | 196 | 807 | 196 |
Laptop | 976 | 337 | 455 | 167 | 851 | 128 |
1 507 | 172 | 3 016 | 336 | 1 528 | 169 | |
MAMS | 3 380 | 400 | 5 042 | 607 | 2 764 | 329 |
数据集 | 正向 (pos) | 中性 (neu) | 负向 (neg) | |||
---|---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |
Restaurant | 2 164 | 727 | 637 | 196 | 807 | 196 |
Laptop | 976 | 337 | 455 | 167 | 851 | 128 |
1 507 | 172 | 3 016 | 336 | 1 528 | 169 | |
MAMS | 3 380 | 400 | 5 042 | 607 | 2 764 | 329 |
模型 | Restaurant | Laptop | MAMS | |||||
---|---|---|---|---|---|---|---|---|
Accuracy | F1 | Accuracy | F1 | Accuracy | F1 | Accuracy | F1 | |
ATAE-LSTM (2015) | 77.20 | — | 68.70 | — | — | — | — | — |
TD-LSTM (2016) | 79.10 | 69.00 | 71.22 | 65.75 | 69.51 | 67.98 | — | — |
RAM (2017) | 80.23 | 70.80 | 74.49 | 71.35 | 69.36 | 67.30 | — | — |
BERT (2019) | 83.62 | 78.28 | 77.58 | 72.38 | 75.28 | 74.11 | 82.82 | 81.90 |
PhraseRNN (2015) | 66.20 | 59.32 | — | — | — | — | — | — |
SynATT (2018) | 80.45 | 71.26 | 77.57 | 69.13 | — | — | — | — |
CDT (2019) | 82.30 | 74.02 | 77.19 | 72.99 | 74.66 | 73.66 | 80.70 | 79.79 |
ASGCN (2019) | 80.77 | 72.02 | 75.55 | 71.05 | 72.15 | 70.40 | — | — |
R-GAT (2020) | 86.60 | 81.35 | 78.21 | 74.07 | 76.15 | 74.88 | 81.75 | 80.87 |
DGEDT (2020) | 86.30 | 80.00 | 79.80 | 75.60 | 77.90 | 75.40 | — | — |
TD-GAT (2020) | 80.35 | 76.13 | 74.13 | 72.01 | 72.68 | 71.15 | — | — |
SD-GAT (2020) | 83.57 | 76.47 | 81.35 | 78.34 | — | — | — | — |
DualGCN (2021) | 86.77 | 81.62 | 80.63 | 77.36 | 76.04 | 74.91 | — | — |
Dual-MRC (2021) | — | 82.04 | — | 75.97 | — | — | — | — |
DR-BERT (2022) | — | — | — | — | 77.24 | 76.10 | — | — |
dotGCN (2022) | 86.16 | 80.49 | 81.03 | 78.10 | 78.11 | 77.00 | 84.95 | 84.44 |
SynPrompt | 86.86 | 80.91 | 80.85 | 78.55 | 76.78 | 75.98 | 85.03 | 84.48 |
模型 | Restaurant | Laptop | MAMS | |||||
---|---|---|---|---|---|---|---|---|
Accuracy | F1 | Accuracy | F1 | Accuracy | F1 | Accuracy | F1 | |
ATAE-LSTM (2015) | 77.20 | — | 68.70 | — | — | — | — | — |
TD-LSTM (2016) | 79.10 | 69.00 | 71.22 | 65.75 | 69.51 | 67.98 | — | — |
RAM (2017) | 80.23 | 70.80 | 74.49 | 71.35 | 69.36 | 67.30 | — | — |
BERT (2019) | 83.62 | 78.28 | 77.58 | 72.38 | 75.28 | 74.11 | 82.82 | 81.90 |
PhraseRNN (2015) | 66.20 | 59.32 | — | — | — | — | — | — |
SynATT (2018) | 80.45 | 71.26 | 77.57 | 69.13 | — | — | — | — |
CDT (2019) | 82.30 | 74.02 | 77.19 | 72.99 | 74.66 | 73.66 | 80.70 | 79.79 |
ASGCN (2019) | 80.77 | 72.02 | 75.55 | 71.05 | 72.15 | 70.40 | — | — |
R-GAT (2020) | 86.60 | 81.35 | 78.21 | 74.07 | 76.15 | 74.88 | 81.75 | 80.87 |
DGEDT (2020) | 86.30 | 80.00 | 79.80 | 75.60 | 77.90 | 75.40 | — | — |
TD-GAT (2020) | 80.35 | 76.13 | 74.13 | 72.01 | 72.68 | 71.15 | — | — |
SD-GAT (2020) | 83.57 | 76.47 | 81.35 | 78.34 | — | — | — | — |
DualGCN (2021) | 86.77 | 81.62 | 80.63 | 77.36 | 76.04 | 74.91 | — | — |
Dual-MRC (2021) | — | 82.04 | — | 75.97 | — | — | — | — |
DR-BERT (2022) | — | — | — | — | 77.24 | 76.10 | — | — |
dotGCN (2022) | 86.16 | 80.49 | 81.03 | 78.10 | 78.11 | 77.00 | 84.95 | 84.44 |
SynPrompt | 86.86 | 80.91 | 80.85 | 78.55 | 76.78 | 75.98 | 85.03 | 84.48 |
类别 | 模型 | Restaurant | Laptop | MAMS | |||
---|---|---|---|---|---|---|---|
Accuracy | F1 | Accuracy | F1 | Accuracy | F1 | ||
w/ disn. | SynPrompt | 86.86 | 80.91 | 80.85 | 78.55 | 85.03 | 84.48 |
w/o con. | 86.51 | 79.76 | 79.59 | 76.65 | 84.66 | 84.25 | |
w/o dep. | 86.42 | 79.23 | 78.64 | 74.99 | 85.10 | 84.73 | |
w/o con. & dep. | 86.24 | 80.05 | 79.27 | 75.39 | 84.51 | 83.92 | |
w/o disn. | SynPrompt | 86.42 | 80.58 | 78.80 | 75.35 | 84.88 | 84.27 |
Prompt | 85.08 | 77.77 | 78.48 | 73.93 | 84.36 | 83.80 |
类别 | 模型 | Restaurant | Laptop | MAMS | |||
---|---|---|---|---|---|---|---|
Accuracy | F1 | Accuracy | F1 | Accuracy | F1 | ||
w/ disn. | SynPrompt | 86.86 | 80.91 | 80.85 | 78.55 | 85.03 | 84.48 |
w/o con. | 86.51 | 79.76 | 79.59 | 76.65 | 84.66 | 84.25 | |
w/o dep. | 86.42 | 79.23 | 78.64 | 74.99 | 85.10 | 84.73 | |
w/o con. & dep. | 86.24 | 80.05 | 79.27 | 75.39 | 84.51 | 83.92 | |
w/o disn. | SynPrompt | 86.42 | 80.58 | 78.80 | 75.35 | 84.88 | 84.27 |
Prompt | 85.08 | 77.77 | 78.48 | 73.93 | 84.36 | 83.80 |
序号 | 评论句子 (显式情感) | 方面词 | w/o con. & dep. | w/o dep. | w/o con. | SynPrompt |
---|---|---|---|---|---|---|
1 | The sushipos is always fresh and yummy and the menupos is pretty varied. | sushi | pos√ | pos√ | pos√ | pos√ |
menu | neu× | pos√ | pos√ | pos√ | ||
2 | I would only go for the coffeepos which is way better than Starbucks or the like. | coffee | neu× | pos√ | pos√ | pos√ |
3 | If your looking for nasty high pricednegfoodneg with ghetto scenery it's here. | priced | pos× | pos× | neg√ | neg√ |
food | neg√ | neg√ | neg√ | neg√ | ||
4 | I reccomend the fried pork dumplingspos,orange chickenpos, and fried ricepos . | dumplings | pos√ | pos√ | pos√ | pos√ |
chicken | pos√ | pos√ | pos√ | pos√ | ||
rice | neu× | pos√ | pos√ | pos√ |
序号 | 评论句子 (显式情感) | 方面词 | w/o con. & dep. | w/o dep. | w/o con. | SynPrompt |
---|---|---|---|---|---|---|
1 | The sushipos is always fresh and yummy and the menupos is pretty varied. | sushi | pos√ | pos√ | pos√ | pos√ |
menu | neu× | pos√ | pos√ | pos√ | ||
2 | I would only go for the coffeepos which is way better than Starbucks or the like. | coffee | neu× | pos√ | pos√ | pos√ |
3 | If your looking for nasty high pricednegfoodneg with ghetto scenery it's here. | priced | pos× | pos× | neg√ | neg√ |
food | neg√ | neg√ | neg√ | neg√ | ||
4 | I reccomend the fried pork dumplingspos,orange chickenpos, and fried ricepos . | dumplings | pos√ | pos√ | pos√ | pos√ |
chicken | pos√ | pos√ | pos√ | pos√ | ||
rice | neu× | pos√ | pos√ | pos√ |
序号 | 评论句子 (隐式情感) | 方面词 | w/o con. & dep. | w/o dep. | w/o con. | SynPrompt |
---|---|---|---|---|---|---|
1 | For pricedneg the you pay for the foodneg, it's on par with other Japanese restaurants. | price | neu× | neg√ | neg√ | neg√ |
food | neu× | neg√ | neg√ | neg√ | ||
2 | The sushipos is cut in blocks bigger than my cell phone. | sushi | neu× | neg√ | neg√ | neg√ |
3 | It doesn't look like much on the outside, but the minute you walk inside, it's a whole other atmospherepos. | atmosphere | neu× | pos√ | neu× | pos√ |
序号 | 评论句子 (隐式情感) | 方面词 | w/o con. & dep. | w/o dep. | w/o con. | SynPrompt |
---|---|---|---|---|---|---|
1 | For pricedneg the you pay for the foodneg, it's on par with other Japanese restaurants. | price | neu× | neg√ | neg√ | neg√ |
food | neu× | neg√ | neg√ | neg√ | ||
2 | The sushipos is cut in blocks bigger than my cell phone. | sushi | neu× | neg√ | neg√ | neg√ |
3 | It doesn't look like much on the outside, but the minute you walk inside, it's a whole other atmospherepos. | atmosphere | neu× | pos√ | neu× | pos√ |
词 | POS(词性) | 词 | POS(词性) |
---|---|---|---|
Hence | RB (副词) | is | VBZ (系动词) |
the | DT (定冠词) | pretty | RB(副词) |
food | NN (名词) | good | JJ(形容词) |
itself | PRP (人称代词) |
词 | POS(词性) | 词 | POS(词性) |
---|---|---|---|
Hence | RB (副词) | is | VBZ (系动词) |
the | DT (定冠词) | pretty | RB(副词) |
food | NN (名词) | good | JJ(形容词) |
itself | PRP (人称代词) |
k-shot | 模型 | Restaurant | Laptop | MAMS | |
---|---|---|---|---|---|
8-shot | SynPrompt | 38.65 | 40.27 | 18.39 | 38.42 |
SynPrompt+ | 50.87 | 57.19 | 40.65 | 51.87 | |
w/o con. | 39.25 | 41.34 | 18.29 | 37.32 | |
w/o dep. | 39.38 | 41.07 | 18.08 | 38.25 | |
16-shot | SynPrompt | 59.89 | 62.52 | 43.64 | 53.91 |
SynPrompt+ | 54.92 | 63.16 | 42.10 | 55.92 | |
w/o con. | 60.70 | 62.73 | 44.23 | 54.04 | |
w/o dep. | 60.32 | 63.40 | 44.08 | 53.97 | |
32-shot | SynPrompt | 64.84 | 66.57 | 50.54 | 57.55 |
SynPrompt+ | 66.46 | 66.81 | 49.22 | 55.54 | |
w/o con. | 64.09 | 67.66 | 50.39 | 56.41 | |
w/o dep. | 64.41 | 66.67 | 50.78 | 57.03 |
k-shot | 模型 | Restaurant | Laptop | MAMS | |
---|---|---|---|---|---|
8-shot | SynPrompt | 38.65 | 40.27 | 18.39 | 38.42 |
SynPrompt+ | 50.87 | 57.19 | 40.65 | 51.87 | |
w/o con. | 39.25 | 41.34 | 18.29 | 37.32 | |
w/o dep. | 39.38 | 41.07 | 18.08 | 38.25 | |
16-shot | SynPrompt | 59.89 | 62.52 | 43.64 | 53.91 |
SynPrompt+ | 54.92 | 63.16 | 42.10 | 55.92 | |
w/o con. | 60.70 | 62.73 | 44.23 | 54.04 | |
w/o dep. | 60.32 | 63.40 | 44.08 | 53.97 | |
32-shot | SynPrompt | 64.84 | 66.57 | 50.54 | 57.55 |
SynPrompt+ | 66.46 | 66.81 | 49.22 | 55.54 | |
w/o con. | 64.09 | 67.66 | 50.39 | 56.41 | |
w/o dep. | 64.41 | 66.67 | 50.78 | 57.03 |
1 | WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615. |
2 | TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: The COLING 2016 Organizing Committee, 2016: 3298-3307. |
3 | 曾雪强,华鑫,刘平生,等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021, 44(6): 1080-1094. |
4 | WU H, ZHANG Z, SHI S, et al. Phrase dependency relational graph attention network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2022, 236: No.107736. |
5 | WU H, ZHANG Z, WU Q. Exploring syntactic and semantic features for authorship attribution[J]. Applied Soft Computing, 2021, 111: No.107815. |
6 | SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5679-5688. |
7 | WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238. |
8 | HUANG L, SUN X, LI S, et al. Syntax-aware graph attention network for aspect-level sentiment classification[C]// Proceedings of the 28th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2020: 799-810. |
9 | CHEN C, TENG Z, WANG Z, et al. Discrete opinion tree induction for aspect-based sentiment analysis[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 2051-2064. |
10 | LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 6319-6329. |
11 | HAN X, ZHAO W, DING N, et al. PTR: prompt tuning with rules for text classification[J]. AI Open, 2022, 3: 182-192. |
12 | VARIA S, WANG S, HALDER K, et al. Instruction tuning for few-shot aspect-based sentiment analysis[C]// Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, and Social Media Analysis. Stroudsburg: ACL, 2023: 19-27. |
13 | SCARIA K, GUPTA H, GOYAL S, et al. InstructABSA: instruction learning for aspect based sentiment analysis[C]// Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers). Stroudsburg: ACL, 2024: 720-736. |
14 | LIU J, ZHANG Z, GUO Z, et al. KEPT: knowledge enhanced prompt tuning for event causality identification[J]. Knowledge-Based Systems, 2023, 259: No.110064. |
15 | WANG J, WANG C, QIU M, et al. KECP: knowledge enhanced contrastive prompting for few-shot extractive question answering[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 3152-3163. |
16 | 曾义夫,蓝天,吴祖峰,等. 基于双记忆注意力的方面级别情感分类模型[J]. 计算机学报, 2019, 42(8): 1845-1857. |
17 | CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 452-461. |
18 | NGUYEN T H, SHIRAI K. PhraseRNN: phrase recursive neural network for aspect-based sentiment analysis[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 2509-2514. |
19 | NGUYEN H T, LE NGUYEN M. Effective attention networks for aspect-level sentiment classification[C]// Proceedings of the 10th International Conference on Knowledge and Systems Engineering. Piscataway: IEEE, 2018: 25-30. |
20 | ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4568-4578. |
21 | TANG H, JI D, LI C, et al. Dependency graph enhanced dual-Transformer structure for aspect-based sentiment classification[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6578-6588. |
22 | MAO Y, SHEN Y, YU C, et al. A joint training Dual-MRC framework for aspect based sentiment analysis[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 13543-13551. |
23 | ZHANG K, ZHANG K, ZHANG M, et al. Incorporating dynamic semantics into pre-trained language model for aspect-based sentiment analysis[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3599-3610. |
24 | GAO T, FANG J, LIU H, et al. LEGO-ABSA: a prompt-based task assemblable unified generative framework for multi-task aspect-based sentiment analysis[C]// Proceedings of the 29th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2022: 7002-7012. |
25 | LI C, GAO F, BU J, et al. SentiPrompt: sentiment knowledge enhanced prompt-tuning for aspect-based sentiment analysis[EB/OL]. [2023-12-15]. . |
26 | CHEN X, ZHANG N, XIE X, et al. KnowPrompt: knowledge-aware prompt-tuning with synergistic optimization for relation extraction[C]// Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022: 2778-2788. |
27 | 陈壮,钱铁云,李万理,等. 低资源方面级情感分析研究综述[J].计算机学报, 2023, 46(7): 1445-1472. |
28 | LIU P, YUAN W, FU J, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): No.195. |
29 | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 1877-1901. |
30 | ZHU Y, WANG Y, QIANG J, et al. Prompt-learning for short text classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2023(Early Access): 1-13. |
31 | MA R, ZHOU X, GUI T, et al. Template-free prompt tuning for few-shot NER[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 5721-5732. |
32 | HAMBARDZUMYAN K, KHACHATRIAN H, MAY J. WARP: word-level adversarial reprogramming[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4921-4933. |
33 | CUI G, HU S, DING N, et al. Prototypical verbalizer for prompt-based few-shot tuning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 7014-7024. |
34 | WENG J, HU Y, QIU J, et al. STPrompt: semantic-guided and task-driven prompts for effective few-shot classification[EB/OL]. [2024-01-07]. . |
35 | WANG Z, ZONG C. Phrase structure parsing with dependency structure[C]// Proceedings of the 23rd International Conference on Computational Linguistics: Posters Volume. [S.l.]: Coling 2010 Organizing Committee, 2010: 1292-1300. |
36 | MANNING C D, SURDEANU M, BAUER J, et al. The Stanford CoreNLP natural language processing Toolkit[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: ACL, 2014: 55-60. |
37 | BAI X, LIU P, ZHANG Y. Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 503-514. |
38 | LIANG S, WEI W, MAO X L, et al. BiSyn-GAT+: bi-syntax aware graph attention network for aspect-based sentiment analysis[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1835-1848. |
39 | JIANG Q, CHEN L, XU R, et al. A challenge dataset and effective models for aspect-based sentiment analysis[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 6280-6285. |
40 | JAIN S M. Hugging face[M]// Introduction to Transformers for NLP: with the hugging face library and models to solve problems. Berkeley, CA: Apress, 2022: 51-67. |
41 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL,2019: 4171-4186. |
42 | KINGMA D P, BA L J. Adam: a method for stochastic optimization[EB/OL]. [2023-12-03]. . |
43 | HOANG M, BIHORAC O A, ROUCES J. Aspect-based sentiment analysis using BERT[C]// Proceedings of the 22nd Nordic Conference on Computational Linguistics. Linköping: Linköping University Electronic Press, 2019: 187-196. |
44 | MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. |
[1] | Yiqin YAN, Chuan LUO, Tianrui LI, Hongmei CHEN. Cross-domain few-shot classification model based on relation network and Vision Transformer [J]. Journal of Computer Applications, 2025, 45(4): 1095-1103. |
[2] | Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure [J]. Journal of Computer Applications, 2025, 45(4): 1157-1168. |
[3] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[4] | Binhong XIE, Wanyin GAO, Wangdong LU, Yingjun ZHANG, Rui ZHANG. Dense object counting network with few-shot similarity matching feature enhancement [J]. Journal of Computer Applications, 2025, 45(2): 403-410. |
[5] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[6] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[7] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
[8] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[9] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[10] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[11] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. |
[12] | Li XIE, Weiping SHU, Junjie GENG, Qiong WANG, Hailin YANG. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspace [J]. Journal of Computer Applications, 2024, 44(10): 3200-3208. |
[13] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[14] | Junhao LUO, Yan ZHU. Multi-dynamic aware network for unaligned multimodal language sequence sentiment analysis [J]. Journal of Computer Applications, 2024, 44(1): 79-85. |
[15] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||