Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1157-1168.DOI: 10.11772/j.issn.1001-9081.2024050573
• Artificial intelligence • Previous Articles Next Articles
Chun XU, Shuangyan JI(), Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU
Received:
2024-05-09
Revised:
2024-07-09
Accepted:
2024-07-11
Online:
2024-07-25
Published:
2025-04-10
Contact:
Shuangyan JI
About author:
XU Chun, born in 1977, Ph. D., professor. Her research interests include natural language processing, big data analysis.Supported by:
通讯作者:
吉双焱
作者简介:
徐春(1977—),女,贵州毕节人,教授,博士,CCF会员,主要研究方向:自然语言处理、大数据分析基金资助:
CLC Number:
Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure[J]. Journal of Computer Applications, 2025, 45(4): 1157-1168.
徐春, 吉双焱, 马欢, 孙恩威, 王萌萌, 苏明钰. 基于知识图谱和对话结构的问诊推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1157-1168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050573
类型 | 样本总数 | 属性 |
---|---|---|
医生 | 2 956 | 性别、所属医院、职称、科室、擅长疾病、 诊断患者数、方面级情感得分 |
医院 | 238 | 位置、等级、类型、全国排名、省级排名、 患者评分、全国排名前10的科室 |
实体 | 27 628 | 医生及其属性、医院及其属性、疾病、 症状、药物等 |
关系 | 135 | 拥有并发症、病因、科室、治疗药物等 |
三元组 | 65 819 | (头实体,关系,尾实体) |
Tab. 1 Description of KG dataset
类型 | 样本总数 | 属性 |
---|---|---|
医生 | 2 956 | 性别、所属医院、职称、科室、擅长疾病、 诊断患者数、方面级情感得分 |
医院 | 238 | 位置、等级、类型、全国排名、省级排名、 患者评分、全国排名前10的科室 |
实体 | 27 628 | 医生及其属性、医院及其属性、疾病、 症状、药物等 |
关系 | 135 | 拥有并发症、病因、科室、治疗药物等 |
三元组 | 65 819 | (头实体,关系,尾实体) |
符号 | 描述 | 符号 | 描述 |
---|---|---|---|
模型参数集 | 医生u的历史诊断对话 | ||
患者p的个人资料向量 | 对话中的语句数 | ||
医生u的个人资料向量 | 医生诊断历史的长度 | ||
第i个话语 | 第i个语句的角色 | ||
第i个诊断对话 | 第i个词 | ||
患者p的查询 |
Tab. 2 Symbol description
符号 | 描述 | 符号 | 描述 |
---|---|---|---|
模型参数集 | 医生u的历史诊断对话 | ||
患者p的个人资料向量 | 对话中的语句数 | ||
医生u的个人资料向量 | 医生诊断历史的长度 | ||
第i个话语 | 第i个语句的角色 | ||
第i个诊断对话 | 第i个词 | ||
患者p的查询 |
数据类型/来源 | 样本数 | 数据类型/来源 | 样本数 |
---|---|---|---|
医生 | 2 956 | 历史数据集 | 38 166 |
患者 | 68 376 | 训练集 | 38 395 |
正、负样本总数 | 95 705 | 验证集 | 9 571 |
正样本 | 67 192 | 测试集 | 9 573 |
负样本 | 28 513 |
Tab. 3 Statistics of data
数据类型/来源 | 样本数 | 数据类型/来源 | 样本数 |
---|---|---|---|
医生 | 2 956 | 历史数据集 | 38 166 |
患者 | 68 376 | 训练集 | 38 395 |
正、负样本总数 | 95 705 | 验证集 | 9 571 |
正样本 | 67 192 | 测试集 | 9 573 |
负样本 | 28 513 |
模块 | Input | Encoder |
---|---|---|
患者表示 学习 | 个人资料编码器:C×64 | Liner:64→128 |
查询编码器‒词级: C×30×64 | KG嵌入:30×64→30×128 Attention:30×128→128, d=128,h=2 | |
句级特征编码器: C×30×128 | Transformer Multi-head self-attention:128→128 | |
融合层:C×256 | Liner:256→128 | |
医生表示 学习 | 个人资料编码:C×64 | TransD嵌入:64→128 |
对话编码器: C×15×10×128 | Multi-head self-attention: 15×10×128→15×128,h=2 前馈网络:Flatten; Linear:1 920→128 | |
对话模拟 | C×128 | MLP Linear:128→128 |
预测层 | C×384 | 线性层:384→128→C |
Tab. 4 Model parameters
模块 | Input | Encoder |
---|---|---|
患者表示 学习 | 个人资料编码器:C×64 | Liner:64→128 |
查询编码器‒词级: C×30×64 | KG嵌入:30×64→30×128 Attention:30×128→128, d=128,h=2 | |
句级特征编码器: C×30×128 | Transformer Multi-head self-attention:128→128 | |
融合层:C×256 | Liner:256→128 | |
医生表示 学习 | 个人资料编码:C×64 | TransD嵌入:64→128 |
对话编码器: C×15×10×128 | Multi-head self-attention: 15×10×128→15×128,h=2 前馈网络:Flatten; Linear:1 920→128 | |
对话模拟 | C×128 | MLP Linear:128→128 |
预测层 | C×384 | 线性层:384→128→C |
方法 | AUC | MRR@15 | Diversity@15 | F1@15 |
---|---|---|---|---|
DRGAN | 0.842 7 | 0.122 4 | 0.819 0 | 0.621 0 |
PMF-CNN | 0.841 5 | 0.136 7 | 0.822 8 | 0.629 3 |
文献[ | 0.892 4 | 0.198 3 | 0.864 3 | 0.675 6 |
MUL-ATT | 0.886 9 | 0.189 6 | 0.853 7 | 0.667 2 |
KGAT | 0.869 5 | 0.165 7 | 0.832 5 | 0.630 8 |
文献[ | 0.872 1 | 0.185 4 | 0.851 9 | 0.641 3 |
MUL-ATT-DS | 0.869 3 | 0.180 2 | 0.846 3 | 0.655 7 |
KGDS-KG | 0.887 9 | 0.198 7 | 0.867 2 | 0.669 4 |
KGDS-DS | 0.891 2 | 0.205 3 | 0.880 1 | 0.684 1 |
KGDS | 0.910 6 | 0.216 1 | 0.902 8 | 0.706 2 |
Tab. 5 Comparison of experimental results of different methods
方法 | AUC | MRR@15 | Diversity@15 | F1@15 |
---|---|---|---|---|
DRGAN | 0.842 7 | 0.122 4 | 0.819 0 | 0.621 0 |
PMF-CNN | 0.841 5 | 0.136 7 | 0.822 8 | 0.629 3 |
文献[ | 0.892 4 | 0.198 3 | 0.864 3 | 0.675 6 |
MUL-ATT | 0.886 9 | 0.189 6 | 0.853 7 | 0.667 2 |
KGAT | 0.869 5 | 0.165 7 | 0.832 5 | 0.630 8 |
文献[ | 0.872 1 | 0.185 4 | 0.851 9 | 0.641 3 |
MUL-ATT-DS | 0.869 3 | 0.180 2 | 0.846 3 | 0.655 7 |
KGDS-KG | 0.887 9 | 0.198 7 | 0.867 2 | 0.669 4 |
KGDS-DS | 0.891 2 | 0.205 3 | 0.880 1 | 0.684 1 |
KGDS | 0.910 6 | 0.216 1 | 0.902 8 | 0.706 2 |
方法 | AUC | MRR@15 | Diversity@15 | F1@15 |
---|---|---|---|---|
KGDS-KG | 0.887 9 | 0.198 7 | 0.867 2 | 0.669 4 |
KGDS-ABSA | 0.904 5 | 0.208 7 | 0.879 6 | 0.688 3 |
KGDS-DS | 0.891 2 | 0.205 3 | 0.880 1 | 0.684 1 |
KGDS-GRU | 0.906 4 | 0.210 3 | 0.892 6 | 0.698 7 |
KGDS-Con | 0.905 8 | 0.209 2 | 0.885 3 | 0.694 5 |
KGDS | 0.910 6 | 0.216 1 | 0.902 8 | 0.706 2 |
Tab. 6 Ablation experimental results
方法 | AUC | MRR@15 | Diversity@15 | F1@15 |
---|---|---|---|---|
KGDS-KG | 0.887 9 | 0.198 7 | 0.867 2 | 0.669 4 |
KGDS-ABSA | 0.904 5 | 0.208 7 | 0.879 6 | 0.688 3 |
KGDS-DS | 0.891 2 | 0.205 3 | 0.880 1 | 0.684 1 |
KGDS-GRU | 0.906 4 | 0.210 3 | 0.892 6 | 0.698 7 |
KGDS-Con | 0.905 8 | 0.209 2 | 0.885 3 | 0.694 5 |
KGDS | 0.910 6 | 0.216 1 | 0.902 8 | 0.706 2 |
KGs/% | AUC | MRR@15 | Diversity@15 | F1@15 | HR@5 | HR@10 | HR@15 | NDCG@5 | NDCG@10 | NDCG@15 |
---|---|---|---|---|---|---|---|---|---|---|
‒30 | 0.859 0 | 0.171 2 | 0.839 2 | 0.653 8 | 0.392 7 | 0.558 1 | 0.647 9 | 0.251 3 | 0.324 8 | 0.337 6 |
‒20 | 0.883 2 | 0.183 8 | 0.867 8 | 0.669 0 | 0.425 6 | 0.579 4 | 0.699 7 | 0.272 4 | 0.358 7 | 0.364 0 |
‒10 | 0.892 8 | 0.205 1 | 0.891 4 | 0.686 3 | 0.445 2 | 0.606 7 | 0.721 6 | 0.297 3 | 0.364 1 | 0.382 6 |
0 | 0.910 6 | 0.212 6 | 0.902 8 | 0.706 2 | 0.463 8 | 0.621 0 | 0.753 4 | 0.302 5 | 0.371 2 | 0.398 8 |
10 | 0.857 3 | 0.184 1 | 0.880 5 | 0.673 6 | 0.413 6 | 0.568 0 | 0.694 7 | 0.258 9 | 0.326 7 | 0.331 2 |
20 | 0.823 1 | 0.132 8 | 0.835 7 | 0.639 4 | 0.365 7 | 0.455 0 | 0.581 6 | 0.204 8 | 0.241 7 | 0.259 3 |
30 | 0.791 1 | 0.106 8 | 0.801 1 | 0.618 9 | 0.305 2 | 0.391 7 | 9.474 8 | 0.173 6 | 0.208 8 | 0.225 4 |
Tab. 7 Experimental results of different KG quality
KGs/% | AUC | MRR@15 | Diversity@15 | F1@15 | HR@5 | HR@10 | HR@15 | NDCG@5 | NDCG@10 | NDCG@15 |
---|---|---|---|---|---|---|---|---|---|---|
‒30 | 0.859 0 | 0.171 2 | 0.839 2 | 0.653 8 | 0.392 7 | 0.558 1 | 0.647 9 | 0.251 3 | 0.324 8 | 0.337 6 |
‒20 | 0.883 2 | 0.183 8 | 0.867 8 | 0.669 0 | 0.425 6 | 0.579 4 | 0.699 7 | 0.272 4 | 0.358 7 | 0.364 0 |
‒10 | 0.892 8 | 0.205 1 | 0.891 4 | 0.686 3 | 0.445 2 | 0.606 7 | 0.721 6 | 0.297 3 | 0.364 1 | 0.382 6 |
0 | 0.910 6 | 0.212 6 | 0.902 8 | 0.706 2 | 0.463 8 | 0.621 0 | 0.753 4 | 0.302 5 | 0.371 2 | 0.398 8 |
10 | 0.857 3 | 0.184 1 | 0.880 5 | 0.673 6 | 0.413 6 | 0.568 0 | 0.694 7 | 0.258 9 | 0.326 7 | 0.331 2 |
20 | 0.823 1 | 0.132 8 | 0.835 7 | 0.639 4 | 0.365 7 | 0.455 0 | 0.581 6 | 0.204 8 | 0.241 7 | 0.259 3 |
30 | 0.791 1 | 0.106 8 | 0.801 1 | 0.618 9 | 0.305 2 | 0.391 7 | 9.474 8 | 0.173 6 | 0.208 8 | 0.225 4 |
方法 | 时间复杂度 | 参数量/106 |
---|---|---|
DRGAN | O(nd2 ) | 31.05 |
PMF-CNN | O(n2d+nd2 ) | 30.73 |
文献[ | O(nd2 ) | 32.76 |
MUL-ATT | O(nd2 ) | 33.18 |
KGAT | O(n2d) | 30.24 |
KGDS | O(n2d+nd2 ) | 32.26 |
Tab. 8 Analysis of model complexity
方法 | 时间复杂度 | 参数量/106 |
---|---|---|
DRGAN | O(nd2 ) | 31.05 |
PMF-CNN | O(n2d+nd2 ) | 30.73 |
文献[ | O(nd2 ) | 32.76 |
MUL-ATT | O(nd2 ) | 33.18 |
KGAT | O(n2d) | 30.24 |
KGDS | O(n2d+nd2 ) | 32.26 |
实体 | 特征和特征值 |
---|---|
患者 | 性别:男,年龄:28岁,身高:181,体重:76, 咨询文本:近两天咽痛且鼻塞 |
胡医生 | 性别:男,所属医院:上海六院,职称:主任医师, 科室:耳喉鼻科,精通疾病:咽炎、鼻窦炎、 扁桃体肥大等,诊断患者数:5 183 |
上海六院 | 位置:上海市徐汇区,等级:三甲,类型:综合医院, 全国排名:32,区域排名:8,患者评分:4.8, 全国排名前十科室:骨科、耳鼻喉科、内分泌科 |
Tab. 9 Example of online consultation
实体 | 特征和特征值 |
---|---|
患者 | 性别:男,年龄:28岁,身高:181,体重:76, 咨询文本:近两天咽痛且鼻塞 |
胡医生 | 性别:男,所属医院:上海六院,职称:主任医师, 科室:耳喉鼻科,精通疾病:咽炎、鼻窦炎、 扁桃体肥大等,诊断患者数:5 183 |
上海六院 | 位置:上海市徐汇区,等级:三甲,类型:综合医院, 全国排名:32,区域排名:8,患者评分:4.8, 全国排名前十科室:骨科、耳鼻喉科、内分泌科 |
实体 | 相关性得分 | 实体 | 相关性得分 |
---|---|---|---|
咽喉肿痛 | 1.35 | 鼻塞 | 1.12 |
耳喉鼻 | 1.69 | 抗病毒口服液 | 0.54 |
Tab. 10 Relevance scores of doctor Hu and relevant entities
实体 | 相关性得分 | 实体 | 相关性得分 |
---|---|---|---|
咽喉肿痛 | 1.35 | 鼻塞 | 1.12 |
耳喉鼻 | 1.69 | 抗病毒口服液 | 0.54 |
1 | ZHANG X, LIU S. Understanding relationship commitment and continuous knowledge sharing in online health communities: a social exchange perspective[J]. Journal of Knowledge Management, 2022, 26(3): 592-614. |
2 | 中国互联网络信息中心. 53次中国互联网络发展状况统计报告[R/OL]. [2024-06-05]. . |
China Internet Network Information Center. The 53th statistical report on China’s Internet development[R/OL]. [2024-06-05]. . | |
3 | LU J, WU D, MAO M, et al. Recommender system application developments: a survey[J]. Decision Support Systems, 2015, 74: 12-32. |
4 | ZHOU Q, SU L, WU L, et al. Deep personalized medical recommendations based on the integration of rating features and review sentiment analysis[J]. Wireless Communications and Mobile Computing, 2021, 2021: No.5551318. |
5 | WU J, ZHANG G, XING Y, et al. A sentiment analysis driven method based on public and personal preferences with correlated attributes to select online doctors[J]. Applied Intelligence, 2023, 53(16): 19093-19114. |
6 | XU C, WANG J, ZHU L, et al. PPMR: a privacy-preserving online medical service recommendation scheme in eHealthcare system[J]. IEEE Internet of Things Journal, 2019, 6(3): 5665-5673. |
7 | CHEN J, YU J, LU W, et al. IR-Rec: an interpretive rules-guided recommendation over knowledge graph[J]. Information Sciences, 2021, 563: 326-341. |
8 | WU C, LIU S, ZENG Z, et al. Knowledge graph-based multi-context-aware recommendation algorithm[J]. Information Sciences, 2022, 595: 179-194. |
9 | ZHAO N, LONG Z, WANG J, et al. AGRE: a knowledge graph recommendation algorithm based on multiple paths embeddings RNN encoder[J]. Knowledge-Based Systems, 2023, 259: No.110078. |
10 | WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 1835-1844. |
11 | 郭洁,林佳瑜,梁祖红,等. 基于知识感知和跨层次对比学习的推荐方法[J]. 计算机应用, 2024, 44(4):1121-1127. |
GUO J, LIN J Y, LIANG Z H, et al. Recommendation method based on knowledge-awareness and cross-level contrastive learning[J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. | |
12 | GUO X, LIN W, LI Y, et al. DKEN: deep knowledge-enhanced network for recommender systems[J]. Information Sciences, 2020, 540: 263-277. |
13 | SHU H, HUANG J. Multi-task feature and structure learning for user-preference based knowledge-aware recommendation[J]. Neurocomputing, 2023, 532: 43-55. |
14 | 樊海玮,鲁芯丝雨,张丽苗,等. 融合知识图谱和图注意力网络的引文推荐算法[J]. 计算机应用, 2023, 43(8):2420-2425. |
FAN H W, LU X S Y, ZHANG L M, et al. Citation recommendation algorithm fusing knowledge graph and graph attention network[J]. Journal of Computer Applications, 2023, 43(8): 2420-2425. | |
15 | WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. |
16 | JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 687-696. |
17 | 赵梦媛,黄晓雯,桑基韬,等. 对话推荐算法研究综述[J]. 软件学报, 2021, 33(12): 4616-4643. |
ZHAO M Y, HUANG X W, SANG J T, et al. Survey on conversational recommendation algorithms[J]. Journal of Software, 2021, 33(12): 4616-4643. | |
18 | RICH E. User modeling via stereotypes[J]. Cognitive Science, 1979, 3(4): 329-354. |
19 | TOU F N, WILLIAMS M D, FIKES R, et al. RABBIT: an intelligent database assistant[C]// Proceedings of the 2nd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 1982: 314-318. |
20 | HAMMOND K J, BURKE R D, LYTINEN S L. A case-based approach to knowledge navigation[C]// Proceedings of the 14th AAAI Workshop on Knowledge Discovery in Databases. Menlo Park: AAAI Press, 1994: 383-394. |
21 | CHRISTAKOPOULOU K, RADLINSKI F, HOFMANN K. Towards conversational recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 815-824. |
22 | 杨智强,殷钊,王衡. 结合用户交互行为和资源内容的资源推荐[J]. 计算机辅助设计与图形学学报, 2014, 26(5):747-754. |
YANG Z Q, YIN Z, WANG H. Providing resource recommendation based on interactive behavior and resource content[J]. Journal of Computer-Aided Design and Computer Graphics, 2014, 26(5): 747-754. | |
23 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
24 | XU B, WANG X, YANG B, et al. Target embedding and position attention with LSTM for aspect based sentiment analysis[C]// Proceedings of the 5th International Conference on Mathematics and Artificial Intelligence. New York: ACM, 2020: 93-97. |
25 | PORIA S, CAMBRIA E, KU L W, et al. A rule-based approach to aspect extraction from product reviews[C]// Proceedings of the 2nd Workshop on Natural Language Processing for Social Media. Stroudsburg: ACL, 2014: 28-37. |
26 | WANG B, WANG H. Bootstrapping both product features and opinion words from Chinese customer reviews with cross-inducing[C]// Proceedings of the 3rd International Joint Conference on Natural Language Processing: Volume-I. [S.l.]: Asian Federation of Natural Language Processing, 2008: 289-295. |
27 | SCHOUTEN K, FRASINCAR F. Survey on aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 813-830. |
28 | LI X, LUO Y, WANG H, et al. Doctor selection based on aspect-based sentiment analysis and neutrosophic TOPSIS method[J]. Engineering Applications of Artificial Intelligence, 2023, 124: No.106599. |
29 | SNYDER K, PAULSON P, BERGEN S. A website assessment tool for patient engagement: a verification[J]. International Journal of Healthcare Management, 2020, 13(1): 58-64. |
30 | MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. |
31 | MANNING C D, SURDEANU M, BAUER J, et al. The Stanford CoreNLP natural language processing toolkit[C]// Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: ACL, 2014: 55-60. |
32 | Binomial proportion confidence interval[EB/OL]. [2024-04-30]. . |
33 | 北京大学信息科学技术学院计算语言学研究所, 郑州大学信息工程学院自然语言处理实验室, 鹏城实验室人工智能研究中心智慧医疗课题组. 中文医学知识图谱[DB/OL]. [2024-06-05]. . |
The Institute of Computational Linguistics of Peking University, Natural Language Processing Laboratory of School of Information Engineering of Zhengzhou University, Artificial Intelligence Research Center Smart Healthcare Research Group of Pengcheng Laboratory. Chinese medical knowledge graph[DB/OL]. [2024-06-05]. . | |
34 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
35 | BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. [2024-04-30].. |
36 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
37 | TIAN B, ZHANG Y, CHEN X, et al. DRGAN: a GAN-based framework for doctor recommendation in Chinese on-line QA communities[C]// Proceedings of the 2019 International Workshops on Database Systems for Advanced Applications, LNCS 11448. Cham: Springer, 2019: 444-447. |
38 | YAN Y, YU G, YAN X. Online doctor recommendation with convolutional neural network and sparse inputs[J]. Computational Intelligence and Neuroscience, 2020, 2020: No.8826557. |
39 | YUAN H, DENG W. Doctor recommendation on healthcare consultation platforms: an integrated framework of knowledge graph and deep learning[J]. Internet Research, 2022, 32(2): 454-476. |
40 | LU X, ZHANG Y, LI J, et al. Doctor recommendation in online health forums via expertise learning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 1111-1123. |
41 | GENG S, TAO B, LIANG G, et al. Temporal knowledge graph attention network for online doctor recommendation[C]// Proceedings of the 8th International Conference on Intelligent Information Processing. New York: ACM, 2023: 277-282. |
[1] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
[2] | Jie HU, Qiyang ZHENG, Jun SUN, Yan ZHANG. Multi-label classification model based on multi-label relational graph and local dynamic reconstruction learning [J]. Journal of Computer Applications, 2025, 45(4): 1104-1112. |
[3] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[4] | Kunyuan JIANG, Xiaoxia LI, Li WANG, Yaodan CAO, Xiaoqiang ZHANG, Nan DING, Yingyue ZHOU. Boundary-cross supervised semantic segmentation network with decoupled residual self-attention [J]. Journal of Computer Applications, 2025, 45(4): 1120-1129. |
[5] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
[6] | Haijun GENG, Yun DONG, Zhiguo HU, Haotian CHI, Jing YANG, Xia YIN. Encrypted traffic classification method based on Attention-1DCNN-CE [J]. Journal of Computer Applications, 2025, 45(3): 872-882. |
[7] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
[8] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[9] | Haiteng MENG, Xiaole ZHAO, Tianrui LI. Lightweight image super-resolution reconstruction based on asymmetric information distillation network [J]. Journal of Computer Applications, 2025, 45(2): 601-609. |
[10] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[11] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[12] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. |
[13] | Lu WANG, Dong LIU, Weiguang LIU. Interpretability study on deformable convolutional network and its application in butterfly species recognition models [J]. Journal of Computer Applications, 2025, 45(1): 261-274. |
[14] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. |
[15] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||