Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2975-2983.DOI: 10.11772/j.issn.1001-9081.2024091382

• Multimedia computing and computer simulation • Previous Articles    

Semi-supervised image dehazing algorithm based on teacher-student learning

Panfeng JING1, Yudong LIANG1,2(), Chaowei LI3, Junru GUO1, Jinyu GUO1   

  1. 1.School of Computer and Information Technology,Shanxi University,Taiyuan Shanxi 030006,China
    2.Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education (Shanxi University),Taiyuan Shanxi 030006,China
    3.Jingying Shuzhi Technology Company Limited,Taiyuan Shanxi 030012,China
  • Received:2024-09-27 Revised:2025-01-07 Accepted:2025-01-13 Online:2025-03-17 Published:2025-09-10
  • Contact: Yudong LIANG
  • About author:JING Panfeng, born in 1999, M. S. candidate. His research interests include computer vision, image processing.
    LI Chaowei, born in 1987, M. S. His research interests include computer vision, intelligent coal mining.
    GUO Junru, born in 1999, M. S. candidate. Her research interests include computer vision, image processing.
    GUO Jinyu, born in 2002, M. S. candidate. His research interests include computer vision, image processing.
  • Supported by:
    National Natural Science Foundation of China(61802237);Fundamental Research Program of Shanxi Province(202203021221002);Natural Science Foundation of Shanxi Province(201901D211176);Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0066);Science and Technology Major Project of Shanxi Province(202101020101019);Key Research and Development Program of Shanxi Province(202102070301019);Special Fund for Science and Technology Innovation Teams of Shanxi(202204051001015)

基于师生学习的半监督图像去雾算法

景攀峰1, 梁宇栋1,2(), 李超伟3, 郭俊茹1, 郭晋育1   

  1. 1.山西大学 计算机与信息技术学院,太原 030006
    2.计算智能与中文信息处理教育部重点实验室(山西大学),太原 030006
    3.精英数智科技股份有限公司,太原 030012
  • 通讯作者: 梁宇栋
  • 作者简介:景攀峰(1999—),男,山西运城人,硕士研究生,主要研究方向:计算机视觉、图像处理
    李超伟(1987—),男,山西吕梁人,硕士,主要研究方向:计算机视觉、煤矿智能化
    郭俊茹(1999—),女,山西运城人,硕士研究生,主要研究方向:计算机视觉、图像处理
    郭晋育(2002—),男,山西吕梁人,硕士研究生,主要研究方向:计算机视觉、图像处理。
  • 基金资助:
    国家自然科学基金资助项目(61802237);国家自然科学基金资助项目(62272284);山西省基础研究计划项目(202203021221002);山西省基础研究计划项目(202203021211291);山西省自然科学基金资助项目(201901D211176);山西省自然科学基金资助项目(202103021223464);山西省高等学校科技创新项目(2019L0066);山西省科技重大专项(202101020101019);山西省重点研发计划项目(202102070301019);山西省科技创新人才团队专项(202204051001015)

Abstract:

Image dehazing is a hot topic in the field of computer vision. Acquiring large-scale, high-quality paired datasets from real world is costly and challenging. Consequently, existing methods use synthetic data for fully supervised deep learning model training, may lead to poor real-world performance of the model. To bridge the domain gap between synthetic and real domains, a semi-supervised image dehazing algorithm based on teacher-student learning was introduced. In this algorithm, a semi-supervised teacher-student learning with Exponential Moving Average (EMA) strategy was used to update the teacher model, and an end-to-end dehazing learning was performed, thereby addressing domain shift issues between synthetic and real data significantly and enhancing generalization performance of the model in real hazy scenarios. Experimental results demonstrate that the proposed algorithm achieves superior performance on two synthetic hazy image datasets SOTS (Synthetic Objective Testing Set) and Haze4K, as well as the real-world hazy image dataset URHI (Unannotated Real-world Hazy Images), while also delivering enhanced dehazing visual effects.

Key words: image dehazing, deep learning, semi-supervised learning, teacher-student learning, domain difference

摘要:

图像去雾是计算机视觉领域的热点话题之一。由于真实世界中大规模高质量的配对数据集的获取存在成本昂贵、实施困难等问题,现有方法通常利用合成数据对深度学习模型进行全监督训练,这可能会导致模型在真实场景下的泛化性能较差。为了解决真实域和合成域之间的域差异问题,提出一种基于师生学习的半监督图像去雾算法。该算法采用一个半监督的师生学习框架,利用指数移动平均(EMA)策略来更新教师模型,并端到端地进行去雾学习,显著地解决了合成数据与真实数据之间的域偏移问题,并提高了模型在真实有雾场景下的泛化性能。实验结果表明,所提算法在2个合成雾霾图像数据集SOTS(Synthetic Objective Testing Set)、Haze4K和真实雾霾图像数据集URHI(Unannotated Real-world Hazy Images)上取得了较好性能,并获得了更好的去雾视觉效果。

关键词: 图像去雾, 深度学习, 半监督学习, 师生学习, 域差异

CLC Number: