Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 95-103.DOI: 10.11772/j.issn.1001-9081.2024121727
• Data science and technology • Previous Articles Next Articles
Received:2024-12-06
Revised:2025-03-13
Accepted:2025-03-17
Online:2026-01-10
Published:2026-01-10
Contact:
Haozhe QIN
About author:SHI Yancui, born in 1982, Ph. D., associate professor. Her research interests include recommender systems, social network.
Supported by:通讯作者:
秦浩哲
作者简介:史艳翠(1982—),女,河北保定人,副教授,博士,CCF会员,主要研究方向:推荐系统、社会化网络
基金资助:CLC Number:
Yancui SHI, Haozhe QIN. Recommendation method integrating user behaviors and improved long-tail algorithm[J]. Journal of Computer Applications, 2026, 46(1): 95-103.
史艳翠, 秦浩哲. 融合用户行为和改进长尾算法的推荐方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 95-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121727
| 数据集 | 用户数 | 物品数 | 评分数 | 稀疏度/% |
|---|---|---|---|---|
| ML-100K | 943 | 1 682 | 100 000 | 93.695 |
| ML-1M | 6 040 | 3 900 | 1 000 209 | 95.764 |
| Amazon-PP | 247 659 | 10 814 | 47 1614 | 99.984 |
Tab. 1 Experimental dataset information
| 数据集 | 用户数 | 物品数 | 评分数 | 稀疏度/% |
|---|---|---|---|---|
| ML-100K | 943 | 1 682 | 100 000 | 93.695 |
| ML-1M | 6 040 | 3 900 | 1 000 209 | 95.764 |
| Amazon-PP | 247 659 | 10 814 | 47 1614 | 99.984 |
| 数据集 | 指标 | 重采样 | 重加权 | ||||
|---|---|---|---|---|---|---|---|
| 原始数据 | 八二划分方法 | 本文划分方法 | 原始数据 | 八二划分方法 | 本文划分方法 | ||
| ML-100K | RMSE | 1.072 34 | 1.087 43 | 1.063 51 | 1.109 63 | ||
| Recall | 0.891 25 | 0.897 69 | 0.899 98 | 0.884 01 | |||
| F1 Score | 0.888 49 | 0.888 06 | 0.889 75 | 0.881 45 | |||
| Coverage | 0.491 08 | 0.494 64 | 0.501 78 | 0.529 89 | |||
| HR@10 | 0.261 50 | 0.213 43 | 0.233 00 | 0.269 50 | |||
| HR@20 | 0.411 04 | 0.395 04 | 0.446 53 | 0.510 00 | |||
| NDCG@10 | 0.125 42 | 0.093 89 | 0.108 46 | 0.129 42 | |||
| NDCG@20 | 0.153 05 | 0.138 24 | 0.165 02 | 0.189 14 | |||
| HR_head@10 | 0.336 97 | 0.272 99 | 0.278 80 | 0.345 62 | |||
| HR_head@20 | 0.517 13 | 0.478 73 | 0.548 34 | 0.652 83 | |||
| NDCG_head@10 | 0.162 82 | 0.123 50 | 0.130 61 | 0.168 82 | |||
| NDCG_head@20 | 0.198 12 | 0.165 17 | 0.202 45 | 0.244 82 | |||
| HR_tail@10 | 0.119 94 | 0.147 96 | 0.128 94 | 0.147 56 | |||
| HR_tail@20 | 0.254 01 | 0.279 28 | 0.240 64 | 0.256 46 | |||
| NDCG_tail@10 | 0.050 14 | 0.066 18 | 0.062 51 | 0.067 13 | |||
| NDCG_tail@20 | 0.086 34 | 0.100 96 | 0.095 26 | 0.085 27 | |||
| ML-1M | RMSE | 0.902 22 | 0.998 02 | 1.003 63 | 1.049 48 | ||
| Recall | 0.911 32 | 0.901 51 | 0.909 33 | 0.894 51 | |||
| F1 Score | 0.905 34 | 0.904 65 | 0.904 79 | 0.896 78 | |||
| Coverage | 0.540 20 | 0.582 83 | 0.589 31 | 0.632 28 | |||
| HR@10 | 0.097 43 | 0.100 21 | 0.071 34 | 0.107 38 | |||
| HR@20 | 0.205 25 | 0.176 63 | 0.183 53 | 0.251 64 | |||
| NDCG@10 | 0.041 94 | 0.047 49 | 0.035 51 | 0.046 95 | |||
| NDCG@20 | 0.061 54 | 0.072 45 | 0.063 13 | 0.089 93 | |||
| HR_head@10 | 0.142 79 | 0.122 83 | 0.092 03 | 0.141 45 | |||
| HR_head@20 | 0.232 05 | 0.260 83 | 0.217 84 | 0.330 77 | |||
| NDCG_head@10 | 0.051 50 | 0.066 73 | 0.048 89 | 0.061 86 | |||
| NDCG_head@20 | 0.081 26 | 0.094 82 | 0.074 41 | 0.119 08 | |||
| HR_tail@10 | 0.038 56 | 0.040 22 | 0.045 41 | 0.051 39 | |||
| HR_tail@20 | 0.103 27 | 0.081 39 | 0.112 04 | 0.119 45 | |||
| NDCG_tail@10 | 0.017 08 | 0.019 34 | 0.020 26 | 0.029 18 | |||
| NDCG_tail@20 | 0.036 68 | 0.027 60 | 0.040 45 | 0.042 16 | |||
| Amazon-PP | RMSE | 1.165 28 | 1.163 78 | 1.158 00 | 1.162 90 | ||
| Recall | 0.969 81 | 0.963 29 | 0.960 32 | 0.959 49 | |||
| F1 Score | 0.965 13 | 0.962 12 | 0.962 50 | 0.962 04 | |||
| Coverage | 0.164 57 | 0.180 49 | 0.171 92 | 0.195 21 | |||
| HR@10 | 0.116 40 | 0.087 30 | 0.060 22 | 0.109 12 | |||
| HR@20 | 0.235 21 | 0.180 34 | 0.126 36 | 0.226 78 | |||
| NDCG@10 | 0.032 51 | 0.028 46 | 0.021 43 | 0.351 18 | |||
| NDCG@20 | 0.076 65 | 0.046 45 | 0.040 98 | 0.073 13 | |||
| HR_head@10 | 0.103 64 | 0.098 80 | 0.231 46 | 0.079 81 | |||
| HR_head@20 | 0.162 54 | 0.133 08 | 0.047 23 | 0.160 45 | |||
| NDCG_head@10 | 0.016 87 | 0.013 06 | 0.008 87 | 0.026 41 | |||
| NDCG_head@20 | 0.056 34 | 0.032 97 | 0.012 45 | 0.051 67 | |||
| HR_tail@10 | 0.022 89 | 0.014 75 | 0.148 71 | 0.188 90 | |||
| HR_tail@20 | 0.410 37 | 0.279 75 | 0.296 89 | 0.387 80 | |||
| NDCG_tail@10 | 0.062 51 | 0.038 13 | 0.045 43 | 0.623 64 | |||
| NDCG_tail@20 | 0.124 89 | 0.076 43 | 0.097 76 | 0.125 34 | |||
Tab. 2 Comparison results between personalized division and traditional 80-20 division
| 数据集 | 指标 | 重采样 | 重加权 | ||||
|---|---|---|---|---|---|---|---|
| 原始数据 | 八二划分方法 | 本文划分方法 | 原始数据 | 八二划分方法 | 本文划分方法 | ||
| ML-100K | RMSE | 1.072 34 | 1.087 43 | 1.063 51 | 1.109 63 | ||
| Recall | 0.891 25 | 0.897 69 | 0.899 98 | 0.884 01 | |||
| F1 Score | 0.888 49 | 0.888 06 | 0.889 75 | 0.881 45 | |||
| Coverage | 0.491 08 | 0.494 64 | 0.501 78 | 0.529 89 | |||
| HR@10 | 0.261 50 | 0.213 43 | 0.233 00 | 0.269 50 | |||
| HR@20 | 0.411 04 | 0.395 04 | 0.446 53 | 0.510 00 | |||
| NDCG@10 | 0.125 42 | 0.093 89 | 0.108 46 | 0.129 42 | |||
| NDCG@20 | 0.153 05 | 0.138 24 | 0.165 02 | 0.189 14 | |||
| HR_head@10 | 0.336 97 | 0.272 99 | 0.278 80 | 0.345 62 | |||
| HR_head@20 | 0.517 13 | 0.478 73 | 0.548 34 | 0.652 83 | |||
| NDCG_head@10 | 0.162 82 | 0.123 50 | 0.130 61 | 0.168 82 | |||
| NDCG_head@20 | 0.198 12 | 0.165 17 | 0.202 45 | 0.244 82 | |||
| HR_tail@10 | 0.119 94 | 0.147 96 | 0.128 94 | 0.147 56 | |||
| HR_tail@20 | 0.254 01 | 0.279 28 | 0.240 64 | 0.256 46 | |||
| NDCG_tail@10 | 0.050 14 | 0.066 18 | 0.062 51 | 0.067 13 | |||
| NDCG_tail@20 | 0.086 34 | 0.100 96 | 0.095 26 | 0.085 27 | |||
| ML-1M | RMSE | 0.902 22 | 0.998 02 | 1.003 63 | 1.049 48 | ||
| Recall | 0.911 32 | 0.901 51 | 0.909 33 | 0.894 51 | |||
| F1 Score | 0.905 34 | 0.904 65 | 0.904 79 | 0.896 78 | |||
| Coverage | 0.540 20 | 0.582 83 | 0.589 31 | 0.632 28 | |||
| HR@10 | 0.097 43 | 0.100 21 | 0.071 34 | 0.107 38 | |||
| HR@20 | 0.205 25 | 0.176 63 | 0.183 53 | 0.251 64 | |||
| NDCG@10 | 0.041 94 | 0.047 49 | 0.035 51 | 0.046 95 | |||
| NDCG@20 | 0.061 54 | 0.072 45 | 0.063 13 | 0.089 93 | |||
| HR_head@10 | 0.142 79 | 0.122 83 | 0.092 03 | 0.141 45 | |||
| HR_head@20 | 0.232 05 | 0.260 83 | 0.217 84 | 0.330 77 | |||
| NDCG_head@10 | 0.051 50 | 0.066 73 | 0.048 89 | 0.061 86 | |||
| NDCG_head@20 | 0.081 26 | 0.094 82 | 0.074 41 | 0.119 08 | |||
| HR_tail@10 | 0.038 56 | 0.040 22 | 0.045 41 | 0.051 39 | |||
| HR_tail@20 | 0.103 27 | 0.081 39 | 0.112 04 | 0.119 45 | |||
| NDCG_tail@10 | 0.017 08 | 0.019 34 | 0.020 26 | 0.029 18 | |||
| NDCG_tail@20 | 0.036 68 | 0.027 60 | 0.040 45 | 0.042 16 | |||
| Amazon-PP | RMSE | 1.165 28 | 1.163 78 | 1.158 00 | 1.162 90 | ||
| Recall | 0.969 81 | 0.963 29 | 0.960 32 | 0.959 49 | |||
| F1 Score | 0.965 13 | 0.962 12 | 0.962 50 | 0.962 04 | |||
| Coverage | 0.164 57 | 0.180 49 | 0.171 92 | 0.195 21 | |||
| HR@10 | 0.116 40 | 0.087 30 | 0.060 22 | 0.109 12 | |||
| HR@20 | 0.235 21 | 0.180 34 | 0.126 36 | 0.226 78 | |||
| NDCG@10 | 0.032 51 | 0.028 46 | 0.021 43 | 0.351 18 | |||
| NDCG@20 | 0.076 65 | 0.046 45 | 0.040 98 | 0.073 13 | |||
| HR_head@10 | 0.103 64 | 0.098 80 | 0.231 46 | 0.079 81 | |||
| HR_head@20 | 0.162 54 | 0.133 08 | 0.047 23 | 0.160 45 | |||
| NDCG_head@10 | 0.016 87 | 0.013 06 | 0.008 87 | 0.026 41 | |||
| NDCG_head@20 | 0.056 34 | 0.032 97 | 0.012 45 | 0.051 67 | |||
| HR_tail@10 | 0.022 89 | 0.014 75 | 0.148 71 | 0.188 90 | |||
| HR_tail@20 | 0.410 37 | 0.279 75 | 0.296 89 | 0.387 80 | |||
| NDCG_tail@10 | 0.062 51 | 0.038 13 | 0.045 43 | 0.623 64 | |||
| NDCG_tail@20 | 0.124 89 | 0.076 43 | 0.097 76 | 0.125 34 | |||
| 数据集 | K | 方法 | 原始数据 | 热门数据 | 长尾数据 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| HR@K | MRR@K | NDCG@K | HR@K | MRR@K | NDCG@K | HR@K | MRR@K | NDCG@K | |||
| ML-100K | 10 | RNS | 0.062 22 | 0.013 72 | 0.024 54 | 0.074 64 | 0.010 65 | 0.025 78 | 0.037 21 | 0.019 66 | 0.023 83 |
| PNS | 0.064 72 | 0.014 01 | 0.025 78 | 0.070 96 | 0.008 72 | 0.022 20 | 0.054 07 | 0.023 29 | 0.042 10 | ||
| DNS | 0.070 18 | 0.019 33 | 0.030 07 | 0.082 14 | 0.018 22 | 0.035 18 | 0.049 84 | 0.020 91 | 0.027 88 | ||
| BNS | 0.071 93 | 0.019 34 | 0.031 21 | 0.099 13 | 0.011 49 | 0.017 46 | 0.059 19 | 0.041 33 | 0.059 29 | ||
| NS-AUC | 0.080 65 | 0.035 99 | 0.082 77 | 0.013 67 | 0.040 29 | 0.033 75 | |||||
| NNS | 0.019 90 | 0.043 12 | 0.020 89 | 0.030 42 | |||||||
| 本文方法 | 0.129 77 | 0.032 02 | 0.069 88 | 0.151 45 | 0.040 69 | 0.079 19 | 0.089 70 | 0.028 41 | |||
| 20 | RNS | 0.174 63 | 0.021 01 | 0.052 31 | 0.227 04 | 0.020 48 | 0.062 40 | 0.078 90 | 0.022 42 | 0.034 21 | |
| PNS | 0.189 99 | 0.021 15 | 0.056 17 | 0.194 16 | 0.017 29 | 0.053 34 | 0.028 03 | ||||
| DNS | 0.192 25 | 0.064 89 | 0.227 11 | 0.033 71 | 0.073 75 | 0.127 05 | 0.028 13 | 0.048 36 | |||
| BNS | 0.191 17 | 0.027 36 | 0.061 05 | 0.205 89 | 0.019 15 | 0.056 85 | 0.168 98 | 0.044 47 | 0.071 47 | ||
| NS-AUC | 0.025 45 | 0.066 75 | 0.263 15 | 0.023 50 | 0.072 03 | 0.169 46 | 0.058 95 | ||||
| NNS | 0.212 03 | 0.026 31 | 0.158 91 | 0.023 35 | 0.055 68 | ||||||
| 本文方法 | 0.251 52 | 0.060 20 | 0.100 33 | 0.287 29 | 0.079 55 | 0.122 82 | 0.185 29 | 0.025 28 | 0.059 37 | ||
| ML-1M | 10 | RNS | 0.025 62 | 0.004 50 | 0.009 21 | 0.024 67 | 0.003 31 | 0.008 00 | 0.027 95 | 0.006 88 | 0.011 71 |
| PNS | 0.029 48 | 0.005 59 | 0.010 95 | 0.024 98 | 0.004 05 | 0.009 41 | 0.035 06 | 0.009 98 | 0.013 49 | ||
| DNS | 0.030 21 | 0.007 34 | 0.012 11 | 0.026 42 | 0.004 89 | 0.010 38 | 0.034 21 | 0.007 93 | 0.014 08 | ||
| BNS | 0.042 32 | 0.012 64 | 0.019 69 | 0.049 94 | 0.013 31 | 0.022 00 | 0.028 59 | 0.011 62 | 0.015 67 | ||
| NS-AUC | 0.014 07 | 0.022 35 | 0.057 66 | 0.016 23 | 0.026 34 | ||||||
| NNS | 0.048 03 | 0.035 88 | 0.012 30 | 0.014 01 | |||||||
| 本文方法 | 0.059 84 | 0.016 55 | 0.029 26 | 0.069 92 | 0.021 37 | 0.032 60 | 0.041 18 | 0.014 55 | 0.020 98 | ||
| 20 | RNS | 0.046 14 | 0.005 92 | 0.014 38 | 0.044 19 | 0.004 66 | 0.012 93 | 0.050 91 | 0.008 45 | 0.017 49 | |
| PNS | 0.057 71 | 0.007 44 | 0.017 96 | 0.051 81 | 0.005 00 | 0.014 64 | 0.068 60 | 0.012 08 | 0.024 18 | ||
| DNS | 0.064 04 | 0.007 20 | 0.018 80 | 0.057 28 | 0.004 50 | 0.015 02 | 0.012 36 | ||||
| BNS | 0.068 39 | 0.014 36 | 0.026 17 | 0.078 34 | 0.015 20 | 0.029 08 | 0.050 59 | 0.021 11 | |||
| NS-AUC | 0.015 97 | 0.085 14 | 0.033 26 | 0.067 09 | 0.010 09 | 0.022 21 | |||||
| NNS | 0.076 33 | 0.027 35 | 0.018 02 | 0.060 71 | 0.009 28 | 0.021 09 | |||||
| 本文方法 | 0.141 04 | 0.018 30 | 0.043 93 | 0.181 07 | 0.019 42 | 0.053 11 | 0.085 70 | 0.016 41 | 0.026 81 | ||
| Amazon-PP | 10 | RNS | 0.153 55 | 0.041 60 | 0.065 91 | 0.193 93 | 0.048 40 | 0.079 83 | 0.076 04 | 0.012 07 | 0.017 46 |
| PNS | 0.116 24 | 0.025 48 | 0.046 89 | 0.106 94 | 0.019 39 | 0.039 63 | 0.132 86 | 0.027 02 | 0.061 21 | ||
| DNS | 0.184 51 | 0.034 98 | 0.075 43 | 0.223 31 | 0.047 01 | 0.110 98 | 0.081 12 | 0.054 22 | |||
| BNS | 0.174 33 | 0.047 38 | 0.074 37 | 0.215 15 | 0.051 41 | 0.104 02 | 0.091 24 | 0.017 74 | 0.034 63 | ||
| NS-AUC | 0.174 17 | 0.050 04 | 0.082 86 | 0.211 34 | 0.052 14 | 0.114 71 | 0.048 39 | ||||
| NNS | 0.099 21 | 0.022 36 | 0.032 11 | ||||||||
| 本文方法 | 0.238 93 | 0.060 83 | 0.122 58 | 0.372 90 | 0.091 52 | 0.160 92 | 0.175 71 | 0.027 46 | 0.066 80 | ||
| 20 | RNS | 0.247 19 | 0.043 83 | 0.087 42 | 0.316 54 | 0.049 07 | 0.106 60 | 0.088 04 | 0.031 82 | 0.043 41 | |
| PNS | 0.167 12 | 0.019 56 | 0.049 55 | 0.124 22 | 0.018 42 | 0.040 37 | 0.022 23 | 0.070 94 | |||
| DNS | 0.300 64 | 0.036 28 | 0.089 84 | 0.341 23 | 0.034 55 | 0.096 64 | 0.203 71 | 0.073 61 | |||
| BNS | 0.245 60 | 0.035 17 | 0.080 79 | 0.265 83 | 0.039 72 | 0.089 69 | 0.198 58 | 0.024 58 | 0.060 10 | ||
| NS-AUC | 0.292 72 | 0.108 40 | 0.320 06 | 0.055 55 | 0.113 22 | 0.226 86 | 0.063 15 | 0.096 78 | |||
| NNS | 0.054 65 | 0.191 87 | 0.033 44 | 0.070 61 | |||||||
| 本文方法 | 0.461 38 | 0.105 00 | 0.184 92 | 0.510 83 | 0.134 42 | 0.221 57 | 0.342 15 | 0.034 06 | |||
Tab. 3 Experimental results of different methods on various types of data in three datasets
| 数据集 | K | 方法 | 原始数据 | 热门数据 | 长尾数据 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| HR@K | MRR@K | NDCG@K | HR@K | MRR@K | NDCG@K | HR@K | MRR@K | NDCG@K | |||
| ML-100K | 10 | RNS | 0.062 22 | 0.013 72 | 0.024 54 | 0.074 64 | 0.010 65 | 0.025 78 | 0.037 21 | 0.019 66 | 0.023 83 |
| PNS | 0.064 72 | 0.014 01 | 0.025 78 | 0.070 96 | 0.008 72 | 0.022 20 | 0.054 07 | 0.023 29 | 0.042 10 | ||
| DNS | 0.070 18 | 0.019 33 | 0.030 07 | 0.082 14 | 0.018 22 | 0.035 18 | 0.049 84 | 0.020 91 | 0.027 88 | ||
| BNS | 0.071 93 | 0.019 34 | 0.031 21 | 0.099 13 | 0.011 49 | 0.017 46 | 0.059 19 | 0.041 33 | 0.059 29 | ||
| NS-AUC | 0.080 65 | 0.035 99 | 0.082 77 | 0.013 67 | 0.040 29 | 0.033 75 | |||||
| NNS | 0.019 90 | 0.043 12 | 0.020 89 | 0.030 42 | |||||||
| 本文方法 | 0.129 77 | 0.032 02 | 0.069 88 | 0.151 45 | 0.040 69 | 0.079 19 | 0.089 70 | 0.028 41 | |||
| 20 | RNS | 0.174 63 | 0.021 01 | 0.052 31 | 0.227 04 | 0.020 48 | 0.062 40 | 0.078 90 | 0.022 42 | 0.034 21 | |
| PNS | 0.189 99 | 0.021 15 | 0.056 17 | 0.194 16 | 0.017 29 | 0.053 34 | 0.028 03 | ||||
| DNS | 0.192 25 | 0.064 89 | 0.227 11 | 0.033 71 | 0.073 75 | 0.127 05 | 0.028 13 | 0.048 36 | |||
| BNS | 0.191 17 | 0.027 36 | 0.061 05 | 0.205 89 | 0.019 15 | 0.056 85 | 0.168 98 | 0.044 47 | 0.071 47 | ||
| NS-AUC | 0.025 45 | 0.066 75 | 0.263 15 | 0.023 50 | 0.072 03 | 0.169 46 | 0.058 95 | ||||
| NNS | 0.212 03 | 0.026 31 | 0.158 91 | 0.023 35 | 0.055 68 | ||||||
| 本文方法 | 0.251 52 | 0.060 20 | 0.100 33 | 0.287 29 | 0.079 55 | 0.122 82 | 0.185 29 | 0.025 28 | 0.059 37 | ||
| ML-1M | 10 | RNS | 0.025 62 | 0.004 50 | 0.009 21 | 0.024 67 | 0.003 31 | 0.008 00 | 0.027 95 | 0.006 88 | 0.011 71 |
| PNS | 0.029 48 | 0.005 59 | 0.010 95 | 0.024 98 | 0.004 05 | 0.009 41 | 0.035 06 | 0.009 98 | 0.013 49 | ||
| DNS | 0.030 21 | 0.007 34 | 0.012 11 | 0.026 42 | 0.004 89 | 0.010 38 | 0.034 21 | 0.007 93 | 0.014 08 | ||
| BNS | 0.042 32 | 0.012 64 | 0.019 69 | 0.049 94 | 0.013 31 | 0.022 00 | 0.028 59 | 0.011 62 | 0.015 67 | ||
| NS-AUC | 0.014 07 | 0.022 35 | 0.057 66 | 0.016 23 | 0.026 34 | ||||||
| NNS | 0.048 03 | 0.035 88 | 0.012 30 | 0.014 01 | |||||||
| 本文方法 | 0.059 84 | 0.016 55 | 0.029 26 | 0.069 92 | 0.021 37 | 0.032 60 | 0.041 18 | 0.014 55 | 0.020 98 | ||
| 20 | RNS | 0.046 14 | 0.005 92 | 0.014 38 | 0.044 19 | 0.004 66 | 0.012 93 | 0.050 91 | 0.008 45 | 0.017 49 | |
| PNS | 0.057 71 | 0.007 44 | 0.017 96 | 0.051 81 | 0.005 00 | 0.014 64 | 0.068 60 | 0.012 08 | 0.024 18 | ||
| DNS | 0.064 04 | 0.007 20 | 0.018 80 | 0.057 28 | 0.004 50 | 0.015 02 | 0.012 36 | ||||
| BNS | 0.068 39 | 0.014 36 | 0.026 17 | 0.078 34 | 0.015 20 | 0.029 08 | 0.050 59 | 0.021 11 | |||
| NS-AUC | 0.015 97 | 0.085 14 | 0.033 26 | 0.067 09 | 0.010 09 | 0.022 21 | |||||
| NNS | 0.076 33 | 0.027 35 | 0.018 02 | 0.060 71 | 0.009 28 | 0.021 09 | |||||
| 本文方法 | 0.141 04 | 0.018 30 | 0.043 93 | 0.181 07 | 0.019 42 | 0.053 11 | 0.085 70 | 0.016 41 | 0.026 81 | ||
| Amazon-PP | 10 | RNS | 0.153 55 | 0.041 60 | 0.065 91 | 0.193 93 | 0.048 40 | 0.079 83 | 0.076 04 | 0.012 07 | 0.017 46 |
| PNS | 0.116 24 | 0.025 48 | 0.046 89 | 0.106 94 | 0.019 39 | 0.039 63 | 0.132 86 | 0.027 02 | 0.061 21 | ||
| DNS | 0.184 51 | 0.034 98 | 0.075 43 | 0.223 31 | 0.047 01 | 0.110 98 | 0.081 12 | 0.054 22 | |||
| BNS | 0.174 33 | 0.047 38 | 0.074 37 | 0.215 15 | 0.051 41 | 0.104 02 | 0.091 24 | 0.017 74 | 0.034 63 | ||
| NS-AUC | 0.174 17 | 0.050 04 | 0.082 86 | 0.211 34 | 0.052 14 | 0.114 71 | 0.048 39 | ||||
| NNS | 0.099 21 | 0.022 36 | 0.032 11 | ||||||||
| 本文方法 | 0.238 93 | 0.060 83 | 0.122 58 | 0.372 90 | 0.091 52 | 0.160 92 | 0.175 71 | 0.027 46 | 0.066 80 | ||
| 20 | RNS | 0.247 19 | 0.043 83 | 0.087 42 | 0.316 54 | 0.049 07 | 0.106 60 | 0.088 04 | 0.031 82 | 0.043 41 | |
| PNS | 0.167 12 | 0.019 56 | 0.049 55 | 0.124 22 | 0.018 42 | 0.040 37 | 0.022 23 | 0.070 94 | |||
| DNS | 0.300 64 | 0.036 28 | 0.089 84 | 0.341 23 | 0.034 55 | 0.096 64 | 0.203 71 | 0.073 61 | |||
| BNS | 0.245 60 | 0.035 17 | 0.080 79 | 0.265 83 | 0.039 72 | 0.089 69 | 0.198 58 | 0.024 58 | 0.060 10 | ||
| NS-AUC | 0.292 72 | 0.108 40 | 0.320 06 | 0.055 55 | 0.113 22 | 0.226 86 | 0.063 15 | 0.096 78 | |||
| NNS | 0.054 65 | 0.191 87 | 0.033 44 | 0.070 61 | |||||||
| 本文方法 | 0.461 38 | 0.105 00 | 0.184 92 | 0.510 83 | 0.134 42 | 0.221 57 | 0.342 15 | 0.034 06 | |||
| [1] | 金苍宏,邵育华,何琴芳.基于自适应群组重排的长尾推荐模型[J].计算机应用, 2023, 43(4): 1122-1128. |
| JIN C H, SHAO Y H, HE Q F. Long-tail recommendation model based on adaptive group reranking [J]. Journal of Computer Applications, 2023, 43(4): 1122-1128. | |
| [2] | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems [J]. Computer, 2009, 42(8): 30-37. |
| [3] | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
| [4] | YASIR R, KARRAR A E, OSMAN W I, et al. Handling imbalanced data through re-sampling: systematic review [J]. Indonesian Journal of Electrical Engineering and Informatics, 2023, 11(2): 503-514. |
| [5] | IHEMELANDU N, EKSTRANDM D. Candidate set sampling for evaluating top-n recommendation [C]// Proceedings of the 2023 IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology. Piscataway: IEEE, 2023: 88-94. |
| [6] | ABDOLLAHPOURI H, MANSOURY M, BURKE R, et al. The connection between popularity bias, calibration, and fairness in recommendation [C]// Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 726-731. |
| [7] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
| [8] | GOEL S, BRODER A, GABRILOVICH E, et al. Anatomy of the long tail: ordinary people with extraordinary tastes [C]// Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York: ACM, 2010: 201-210. |
| [9] | KLIMASHEVSKAIA A, JANNACH D, ELAHI M, et al. A survey on popularity bias in recommender systems [J]. User Modeling and User-Adapted Interaction, 2024, 34(5): 1777-1834. |
| [10] | YU H, DU Y, WU J. Reviving undersampling for long-tailed learning [J]. Pattern Recognition, 2025, 161: No.111200. |
| [11] | QIN B, HUANG Z, TIAN X, et al. GACRec: generative adversarial contrastive learning for improved long-tail item recommendation [J]. Knowledge-Based Systems, 2024, 300: No.112146. |
| [12] | YU C, ZHAO J, WU X, et al. TPGRec: text-enhanced and popularity-smoothing graph collaborative filtering for long-tail item recommendation [J]. Neurocomputing, 2025, 626: No.129539. |
| [13] | SCHNABEL T, SWAMINATHAN A, SINGH A, et al. Recommendations as treatments: debiasing learning and evaluation [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1670-1679. |
| [14] | ZHANG Y, CHENG D Z, YAO T, et al. A model of two tales: dual transfer learning framework for improved long-tail item recommendation [C]// Proceedings of the 2021 Web Conference. New York: ACM, 2021: 2220-2231. |
| [15] | WEI T, FENG F, CHEN J, et al. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1791-1800. |
| [16] | PRAKASH A, BERMPERIDIS D, CHENNU S. Evaluating performance and bias of negative sampling in large-scale sequential recommendation models [EB/OL]. [2025-01-13]. . |
| [17] | YANG X, WANG B. Local ranking and global fusion for personalized recommendation [J]. Applied Soft Computing, 2020, 96: No.106636. |
| [18] | CHENG M, YUAN F, LIU Q, et al. Learning recommender systems with implicit feedback via soft target enhancement [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 575-584. |
| [19] | SHI W, CHEN J, FENG F, et al. On the theories behind hard negative sampling for recommendation [C]// Proceedings of the 2023 ACM Web Conference. New York: ACM, 2023: 812-822. |
| [20] | CHE F, TAO J. M2ixKG: mixing for harder negative samples in knowledge graph [J]. Neural Networks, 2024, 177: No.106358. |
| [21] | LIU B, WANG B. Bayesian negative sampling for recommendation [C]// Proceedings of the IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 749-761. |
| [22] | LIU B, CHEN E, WANG B. Reducing popularity bias in recommender systems through AUC-optimal negative sampling [EB/OL]. [2025-03-07]. . |
| [23] | MA H, XIE R, MENG L, et al. Plug-in diffusion model for sequential recommendation [C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 8886-8894. |
| [24] | ABDOLLAHPOURI H, MANSOURY M, BURKE R, et al. User-centered evaluation of popularity bias in recommender systems [C]// Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization. New York: ACM, 2021: 119-129. |
| [25] | ZHAO Y, WANG Y, LIU Y, et al. Fairness and diversity in recommender systems: a survey [J]. ACM Transactions on Intelligent Systems and Technology, 2025, 16(1): No.2. |
| [26] | PRENT J, MANSOURY M. Correcting for popularity bias in recommender systems via item loss equalization [EB/OL]. [2025-02-17]. . |
| [27] | UNGRUH R, DINNISSEN K, VOLK A, et al. Putting popularity bias mitigation to the test: a user-centric evaluation in music recommenders [C]// Proceedings of the 18th ACM Conference on Recommender Systems. New York: ACM, 2024: 169-178. |
| [28] | 徐月梅,胡玲,赵佳艺,等.大语言模型的技术应用前景与风险挑战[J].计算机应用, 2024, 44(6): 1655-1662. |
| XU Y M, HU L, ZHAO J Y, et al. Technology application prospects and risk challenges of large language models [J]. Journal of Computer Applications, 2024, 44(6): 1655-1662. | |
| [29] | LI X, CHEN B, GUO H, et al. IntTower: the next generation of two-tower model for pre-ranking system [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 3292-3301. |
| [1] | Ruiyang ZHANG, Mingjie ZHAO, Bing GUO, Pinghong JIANG. On-chain data query optimization based on hybrid index [J]. Journal of Computer Applications, 2026, 46(1): 77-84. |
| [2] | Ziyang CHENG, Ruizhang HUANG, Jingjing XUE. Deep evolutionary topic clustering model [J]. Journal of Computer Applications, 2026, 46(1): 85-94. |
| [3] | Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition [J]. Journal of Computer Applications, 2025, 45(9): 2838-2847. |
| [4] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
| [5] | Ao SHEN, Ruizhang HUANG, Jingjing XUE, Yanping CHEN, Yongbin QIN. Deep variational text clustering model based on distribution augmentation [J]. Journal of Computer Applications, 2025, 45(8): 2457-2463. |
| [6] | Zheng GU, Xuebin CHEN, Hongyang ZHANG, Yuxin LI. Fine-tuned and filtered oversampling method based on agglomerative hierarchical clustering [J]. Journal of Computer Applications, 2025, 45(7): 2138-2144. |
| [7] | Shujun GUO, Weijun REN, Qianqian CHEN, Guangfei YOU. Real-time prediction of traffic status based on clustering multivariate time series model [J]. Journal of Computer Applications, 2025, 45(7): 2253-2261. |
| [8] | Jiaqi CHEN, Yulin HE, Yingchao CHENG, Zhexue HUANG. Semi-EM algorithm for solving Gamma mixture model of multimodal probability distribution [J]. Journal of Computer Applications, 2025, 45(7): 2153-2161. |
| [9] | Le XU, Ruizhang HUANG, Ruina BAI, Yongbin QIN. Deep semi-supervised text clustering with intentional regularization [J]. Journal of Computer Applications, 2025, 45(7): 2145-2152. |
| [10] | Shuangshuang CUI, Hongzhi WANG, Jiahao ZHU, Hao WU. Two-stage data selection method for classifier with low energy consumption and high performance [J]. Journal of Computer Applications, 2025, 45(6): 1703-1711. |
| [11] | Meng LUO, Chao GAO, Zhen WANG. Improvement method of heuristic vehicle routing algorithm based on constrained spectral clustering [J]. Journal of Computer Applications, 2025, 45(5): 1387-1394. |
| [12] | Shujian GUO, Jieyue YU, Xuesong YIN. Graph regularized elastic net subspace clustering [J]. Journal of Computer Applications, 2025, 45(5): 1464-1471. |
| [13] | Qingli CHEN, Yuanbo GUO, Chen FANG. Clustering federated learning algorithm for heterogeneous data [J]. Journal of Computer Applications, 2025, 45(4): 1086-1094. |
| [14] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
| [15] | Zhongrui JING, Xuebin CHEN, Yinlong JIAN, Qi ZHONG, Zhenbo ZHANG. Federated learning fairness algorithm based on personalized submodel and K-means clustering [J]. Journal of Computer Applications, 2025, 45(12): 3747-3756. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
