Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 104-112.DOI: 10.11772/j.issn.1001-9081.2025010097

• Data science and technology • Previous Articles     Next Articles

Session-based recommendation model based on time-aware and space-enhanced dual channel graph neural network

Xingyao YANG1(), Zheng QI1, Jiong YU1, Zulian ZHANG2, Shuai MA1, Hongtao SHEN1   

  1. 1.School of Software,Xinjiang University,Urumqi Xinjiang 830091,China
    2.Xinjiang Xinnong Network Information Center,Meteorological Bureau of Xinjiang Uygur Autonomous Region,Urumqi Xinjiang 830002,China
  • Received:2025-01-23 Revised:2025-04-01 Accepted:2025-04-02 Online:2026-01-10 Published:2026-01-10
  • Contact: Xingyao YANG
  • About author:QI Zheng, born in 1999, M. S. candidate. His research interests include recommender system.
    YU Jiong, born in 1964, Ph. D., professor. His research interests include grid computing, parallel computing.
    ZHANG Zulian, born in 1984, M. S., senior engineer. Her research interests include numerical prediction, information retrieval.
    MA Shuai, born in 1998, M. S. candidate. His research interests include recommender system.
    SHEN Hongtao, born in 2001, M. S. candidate. His research interests include recommender system.
  • Supported by:
    Xinjiang Uygur Autonomous Region Natural Science Foundation(2023D01C17);National Natural Science Foundation of China(62262064);Xinjiang Uygur Autonomous Region Science and Technology Program-Tianshan Innovative Team Program(2023D4012);Xinjiang Meteorological Bureau Key Project(ZD202503)

时间感知和空间增强的双通道图神经网络会话推荐模型

杨兴耀1(), 齐正1, 于炯1, 张祖莲2, 马帅1, 沈洪涛1   

  1. 1.新疆大学 软件学院,乌鲁木齐 830091
    2.新疆维吾尔自治区气象局 新疆兴农网信息中心,乌鲁木齐 830002
  • 通讯作者: 杨兴耀
  • 作者简介:齐正(1999—),男,山西大同人,硕士研究生,主要研究方向:推荐系统
    于炯(1964—),男,新疆乌鲁木齐人,教授,博士, CCF会员,主要研究方向:网格计算、并行计算
    张祖莲(1984—),女,湖北襄阳人,高级工程师,硕士,主要研究方向:数值预报、信息检索
    马帅(1998—),男,山东菏泽人,硕士研究生,主要研究方向:推荐系统
    沈洪涛(2001—),男,安徽淮南人,硕士研究生,主要研究方向:推荐系统。
  • 基金资助:
    新疆维吾尔自治区自然科学基金面上项目(2023D01C17);新疆维吾尔自治区自然科学基金面上项目(2023D01A123);新疆维吾尔自治区自然科学基金面上项目(20220412003);国家自然科学基金资助项目(62262064);新疆维吾尔自治区科技计划项目—天山创新团队计划项目(2023D4012);新疆气象局重点项目(ZD202503)

Abstract:

To address the problem that session-based recommendation models ignore temporal information and spatial relationships among items, leading to an inability to capture complex transition patterns among items accurately, a session-based recommendation model based on time-aware and space-enhanced dual channel Graph Neural Network (GNN) was proposed. Firstly, for the temporal channel, adaptive temporal weights were used to process the items, thereby constructing a time-aware session graph, and the users’ interest-shifting patterns were captured through a time-aware GNN. Secondly, for the spatial channel, spatial relationships among items were embedded into a Graph ATtention network (GAT), so as to aggregate the information from the perspective of spatial graph structure. Finally, a contrastive learning strategy was introduced to enhance recommendation performance. The results of comparative experiments conducted on three publicly available datasets, Diginetica, Tmall, and Nowplaying — where the proposed model was compared with baseline models including Atten-Mixer (multi-level Attention Mixture network) and GCE-GNN (Global Context Enhanced GNN) — show that the proposed model achieves superior precision (P) and Mean Reciprocal Rank (MRR). Compared to the suboptimal results, the proposed model has the P@10 improved by 2.09%, 24.97%, and 10.45%, respectively, and the MRR@10 improved by 2.52%, 11.60%, and 4.43%, respectively.

Key words: recommendation system, graph neural network, session-based recommendation, contrastive learning, Graph ATtention network (GAT)

摘要:

为了解决会话推荐模型忽略项目之间的时间信息和空间关系,导致无法准确捕获项目之间复杂转换模式的问题,提出一种时间感知和空间增强的双通道图神经网络(GNN)的会话推荐模型。首先,对于时间通道,采用自适应时间权重对项目进行处理,以构建时间感知的会话图,并通过时间感知的GNN捕获用户的兴趣转移模式;其次,对于空间通道,将项目之间的空间关系嵌入一个图注意力网络(GAT)中,以从空间图结构的角度对信息进行聚合;最后,引入一种对比学习策略增强推荐效果。在Diginetica、Tmall和Nowplaying 3个公开数据集上,将所提模型与Atten-Mixer(multi-level Attention Mixture network)和GCE-GNN(Global Context Enhanced GNN)等基线模型进行对比实验,实验结果表明,所提模型的精确率(P)和平均倒数排名(MRR)取得了更优的效果。相较于次优结果,所提模型的P@10分别提高了2.09%、24.97%和10.45%, MRR@10分别提高2.52%、11.60%和4.43%。

关键词: 推荐系统, 图神经网络, 会话推荐, 对比学习, 图注意力网络

CLC Number: