Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3564-3572.DOI: 10.11772/j.issn.1001-9081.2024111567
• Artificial intelligence • Previous Articles
Shuang LIU(
), Guijun LUO, Jiana MENG
Received:2024-11-05
Revised:2025-03-16
Accepted:2025-03-20
Online:2025-04-02
Published:2025-11-10
Contact:
Shuang LIU
About author:LUO Guijun, born in 2000, M. S. candidate. His research interests include information extraction, natural language processing.Supported by:通讯作者:
刘爽
作者简介:罗桂君(2000—),男,湖南衡阳人,硕士研究生,主要研究方向:信息抽取、自然语言处理基金资助:CLC Number:
Shuang LIU, Guijun LUO, Jiana MENG. Joint extraction model of entities and relations based on memory enhancement and span screening[J]. Journal of Computer Applications, 2025, 45(11): 3564-3572.
刘爽, 罗桂君, 孟佳娜. 基于记忆增强和跨度筛选的实体和关系联合抽取模型[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3564-3572.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111567
| 数据集 | 样本数 | 实体数 | 关系数 | ||
|---|---|---|---|---|---|
| 训练集 | 验证集 | 测试集 | |||
| ACE05 | 10 051 | 2 424 | 2 050 | 7 | 6 |
| SciERC | 1 864 | 275 | 551 | 6 | 7 |
| CoNLL04 | 922 | 231 | 288 | 4 | 5 |
Tab. 1 Statistics of datasets
| 数据集 | 样本数 | 实体数 | 关系数 | ||
|---|---|---|---|---|---|
| 训练集 | 验证集 | 测试集 | |||
| ACE05 | 10 051 | 2 424 | 2 050 | 7 | 6 |
| SciERC | 1 864 | 275 | 551 | 6 | 7 |
| CoNLL04 | 922 | 231 | 288 | 4 | 5 |
| 设备名 | 环境配置 |
|---|---|
| Ubuntu20.04 | |
| CPU | 15 vCPU Intel Xeon Platinum 8474C |
| GPU | GeForce RTX 3090 |
| 内存 | 80 GB |
| Python | 3.8.10 |
| 深度学习框架 | PyTorch1.11.0+CU113 |
Tab. 2 Experimental environment
| 设备名 | 环境配置 |
|---|---|
| Ubuntu20.04 | |
| CPU | 15 vCPU Intel Xeon Platinum 8474C |
| GPU | GeForce RTX 3090 |
| 内存 | 80 GB |
| Python | 3.8.10 |
| 深度学习框架 | PyTorch1.11.0+CU113 |
| 参数 | ACE05 | SciERC | CoNLL04 |
|---|---|---|---|
| 0.000 05 | 0.000 05 | 0.000 05 | |
| 训练次数 | 200 | 300 | 200 |
| 批次大小 | 16 | 16 | 16 |
| 丢弃值 | 0.4 | 0.4 | 0.4 |
| 梯度修剪值 | 5.0 | 5.0 | 5.0 |
| 权重衰减率 | 0.000 01 | 0.000 01 | 0.000 01 |
| 早停轮数 | 30 | 30 | 30 |
| 隐藏层大小 | 150 | 150 | 150 |
| 预热率 | 0.2 | 0.2 | 0.2 |
| 跨度系数 | 0.5 | 0.5 | 0.5 |
| 上下文窗口大小 | 300 | 200 | 400 |
| 跨度长度限制 | 8 | 12 | 8 |
| 距离阈值 | 1.4 | 1.4 | 1.2 |
Tab. 3 Experimental parameter setting
| 参数 | ACE05 | SciERC | CoNLL04 |
|---|---|---|---|
| 0.000 05 | 0.000 05 | 0.000 05 | |
| 训练次数 | 200 | 300 | 200 |
| 批次大小 | 16 | 16 | 16 |
| 丢弃值 | 0.4 | 0.4 | 0.4 |
| 梯度修剪值 | 5.0 | 5.0 | 5.0 |
| 权重衰减率 | 0.000 01 | 0.000 01 | 0.000 01 |
| 早停轮数 | 30 | 30 | 30 |
| 隐藏层大小 | 150 | 150 | 150 |
| 预热率 | 0.2 | 0.2 | 0.2 |
| 跨度系数 | 0.5 | 0.5 | 0.5 |
| 上下文窗口大小 | 300 | 200 | 400 |
| 跨度长度限制 | 8 | 12 | 8 |
| 距离阈值 | 1.4 | 1.4 | 1.2 |
| 模型 | 编码器 | ACE05 | SciERC | CoNLL04 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Ent | Rel | Rel+ | Ent | Rel | Rel+ | Ent | Rel | Rel+ | ||
| Joint w/ Global | — | 80.8 | 52.1 | 49.5 | — | — | — | — | — | — |
| SPtree | LSTM | 83.4 | — | 55.6 | — | — | — | — | — | — |
| DYGIE | ELMO | 88.4 | 63.2 | — | 65.2 | 41.6 | — | — | — | — |
| Multi‑turn QA | BERTL | 84.8 | — | 60.2 | — | — | — | — | — | — |
| OneIE | 88.8 | 67.5 | — | — | — | — | — | — | — | |
| DYGIE++ | BERTB/ SciBERT | 88.6 | 63.4 | — | — | — | — | — | — | — |
| TANL | 89.0 | — | 63.7 | — | — | — | 90.3 | — | 70.0 | |
| PURE‑F | 90.1 | 67.7 | 64.8 | 68.9 | 50.1 | 36.8 | — | — | — | |
| PURE‑A | — | 66.5 | — | — | 48.1 | — | — | — | — | |
| MEERE | 89.2 | 67.9 | 65.0 | 69.6 | 50.9 | 38.9 | 89.8 | 75.7 | 73.1 | |
| Tab‑Seq | ALBERT/ SciBERT | 89.5 | — | 64.3 | — | — | — | 90.1 | 73.8 | 73.6 |
| PFN | 89.0 | — | 66.8 | 66.8 | — | 38.4 | — | — | — | |
| UniRE | 90.0 | — | 66.0 | 68.4 | — | 36.9 | — | — | — | |
| TablERT | 87.8 | 65.0 | 61.8 | — | — | — | 90.5 | 73.2 | 72.2 | |
| MEERE | 89.9 | 68.6 | 67.0 | 69.6 | 50.9 | 38.9 | 90.6 | 77.0 | 76.6 | |
Tab. 4 Comparison of F1 values on ACE05, SciERC, and CoNLL04 test sets
| 模型 | 编码器 | ACE05 | SciERC | CoNLL04 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Ent | Rel | Rel+ | Ent | Rel | Rel+ | Ent | Rel | Rel+ | ||
| Joint w/ Global | — | 80.8 | 52.1 | 49.5 | — | — | — | — | — | — |
| SPtree | LSTM | 83.4 | — | 55.6 | — | — | — | — | — | — |
| DYGIE | ELMO | 88.4 | 63.2 | — | 65.2 | 41.6 | — | — | — | — |
| Multi‑turn QA | BERTL | 84.8 | — | 60.2 | — | — | — | — | — | — |
| OneIE | 88.8 | 67.5 | — | — | — | — | — | — | — | |
| DYGIE++ | BERTB/ SciBERT | 88.6 | 63.4 | — | — | — | — | — | — | — |
| TANL | 89.0 | — | 63.7 | — | — | — | 90.3 | — | 70.0 | |
| PURE‑F | 90.1 | 67.7 | 64.8 | 68.9 | 50.1 | 36.8 | — | — | — | |
| PURE‑A | — | 66.5 | — | — | 48.1 | — | — | — | — | |
| MEERE | 89.2 | 67.9 | 65.0 | 69.6 | 50.9 | 38.9 | 89.8 | 75.7 | 73.1 | |
| Tab‑Seq | ALBERT/ SciBERT | 89.5 | — | 64.3 | — | — | — | 90.1 | 73.8 | 73.6 |
| PFN | 89.0 | — | 66.8 | 66.8 | — | 38.4 | — | — | — | |
| UniRE | 90.0 | — | 66.0 | 68.4 | — | 36.9 | — | — | — | |
| TablERT | 87.8 | 65.0 | 61.8 | — | — | — | 90.5 | 73.2 | 72.2 | |
| MEERE | 89.9 | 68.6 | 67.0 | 69.6 | 50.9 | 38.9 | 90.6 | 77.0 | 76.6 | |
| 设置 | ACE05 | SciERC | ||
|---|---|---|---|---|
| Ent | Rel+ | Ent | Rel+ | |
| MEERE | 89.9 | 67.0 | 69.6 | 38.9 |
| 移除记忆模块 | 88.5 | 64.9 | 66.7 | 36.0 |
| 移除跨度筛选模块 | 88.2 | 65.9 | 68.4 | 38.2 |
| 移除跨句子上下文 | 89.9 | 65.8 | 69.5 | 38.8 |
| 移除双向关系 | 89.8 | 65.7 | 69.3 | 38.4 |
Tab. 5 F1 values with different components removed on ACE 05 and SciERC test sets
| 设置 | ACE05 | SciERC | ||
|---|---|---|---|---|
| Ent | Rel+ | Ent | Rel+ | |
| MEERE | 89.9 | 67.0 | 69.6 | 38.9 |
| 移除记忆模块 | 88.5 | 64.9 | 66.7 | 36.0 |
| 移除跨度筛选模块 | 88.2 | 65.9 | 68.4 | 38.2 |
| 移除跨句子上下文 | 89.9 | 65.8 | 69.5 | 38.8 |
| 移除双向关系 | 89.8 | 65.7 | 69.3 | 38.4 |
| 模型 | ACE05 | SciERC | ||
|---|---|---|---|---|
| Rel(F1)/% | 每秒处理的 句子数 | Rel(F1)/% | 每秒处理的 句子数 | |
| PURE-F | 67.7 | 14.7 | 50.1 | 19.9 |
| PURE-A | 66.5 | 237.6 | 48.8 | 194.7 |
| MEERE | 67.9 | 220.1 | 50.9 | 185.5 |
Tab. 6 F1 value and speed comparisons of different models on ACE05 and SciERC test sets
| 模型 | ACE05 | SciERC | ||
|---|---|---|---|---|
| Rel(F1)/% | 每秒处理的 句子数 | Rel(F1)/% | 每秒处理的 句子数 | |
| PURE-F | 67.7 | 14.7 | 50.1 | 19.9 |
| PURE-A | 66.5 | 237.6 | 48.8 | 194.7 |
| MEERE | 67.9 | 220.1 | 50.9 | 185.5 |
| [1] | 鄂海红,张文静,肖思琪,等. 深度学习实体关系抽取研究综述[J]. 软件学报, 2019, 30(6):1793-1818. |
| E H H, ZHANG W J, XIAO S Q, et al. Survey of entity relationship extraction based on deep learning[J]. Journal of Software, 2019, 30(6): 1793-1818. | |
| [2] | LUAN Y, HE L, OSTENDORF M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3219-3232. |
| [3] | LIN Y, SHEN S, LIU Z, et al. Neural relation extraction with selective attention over instances[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 2124-2133. |
| [4] | YAN Z, YANG S, LIU W, et al. Joint entity and relation extraction with span pruning and hypergraph neural networks[C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 7512-7526. |
| [5] | ZHAO T, YAN Z, CAO Y, et al. Asking effective and diverse questions: a machine reading comprehension based framework for joint entity-relation extraction[C]// Proceedings of the 29th International Joint Conferences on Artificial Intelligence. California: IJCAI.org, 2020: 3948-3954. |
| [6] | LI X, YIN F, SUN Z, et al. Entity-relation extraction as multi-turn question answering[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL,2019: 1340-1350. |
| [7] | TAKANOBU R, ZHANG T, LIU J, et al. A hierarchical framework for relation extraction with reinforcement learning[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 7072-7079. |
| [8] | YE D, LIN Y, LI P, et al. Packed levitated marker for entity and relation extraction[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 4904-4917. |
| [9] | YAN Z, JIA Z, TU K. An empirical study of pipeline vs. joint approaches to entity and relation extraction[C]// Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg: ACL, 2022: 437-443. |
| [10] | MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1105-1116. |
| [11] | WANG J, LU W. Two are better than one: joint entity and relation extraction with table-sequence encoders[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 1706-1721. |
| [12] | WANG Y, SUN C, WU Y, et al. UniRE: a unified label space for entity relation extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 220-231. |
| [13] | GUPTA P, SCHÜTZE H, ANDRASSY B. Table filling multi-task recurrent neural network for joint entity and relation extraction[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: The COLING 2016 Organizing Committee, 2016: 2537-2547. |
| [14] | SUN C, GONG Y, WU Y, et al. Joint type inference on entities and relations via graph convolutional networks[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1361-1370. |
| [15] | NGUYEN M V, LAI V D, NGUYEN T H. Cross-task instance representation interactions and label dependencies for joint information extraction with graph convolutional networks[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 27-38. |
| [16] | YANG B, CARDIE C. Joint inference for fine-grained opinion extraction[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2013: 1640-1649. |
| [17] | KATIYAR A, CARDIE C. Investigating LSTMs for joint extraction of opinion entities and relations[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 919-929. |
| [18] | WADDEN D, WENNBERG U, LUAN Y, et al. Entity, relation, and event extraction with contextualized span representations [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg: ACL, 2019: 5784-5789. |
| [19] | SHEN Y, MA X, TANG Y, et al. A trigger-sense memory flow framework for joint entity and relation extraction[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 1704-1715. |
| [20] | HUANG J, LI X, DU Y, et al. An aspect-opinion joint extraction model for target-oriented opinion words extraction on global space[J]. Applied Intelligence, 2025, 55: No.23. |
| [21] | LV F, LIANG T, FEI Z, et al. Progressive multigranularity information propagation for coupled aspect-opinion extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6): 7577-7586. |
| [22] | MA D, XU J, WANG Z, et al. Entity-aspect-opinion-sentiment quadruple extraction for fine-grained sentiment analysis[EB/OL]. [2024-10-13].. |
| [23] | FEI H, WU S, LI J, et al. LasUIE: unifying information extraction with latent adaptive structure-aware generative language model[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 15460-15475. |
| [24] | WAN Z, CHENG F, MAO Z, et al. GPT-RE: in-context learning for relation extraction using large language models[C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 3534-3547. |
| [25] | RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21: 1-67. |
| [26] | LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7871-7880. |
| [27] | YE H, ZHANG N, CHEN H, et al. Generative knowledge graph construction: a review[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 1-17. |
| [28] | ZHAO T, YAN Z, CAO Y, et al. A unified multi-task learning framework for joint extraction of entities and relations[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 14524-14531. |
| [29] | LI S, JI H, HAN J. Document-level event argument extraction by conditional generation[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 894-908. |
| [30] | GIORGI J, BADER G D, WANG B. A sequence-to-sequence approach for document-level relation extraction[C]// Proceedings of the 21st Workshop on Biomedical Language Processing. Stroudsburg: ACL, 2022: 10-25. |
| [31] | LIU T, JIANG Y E, MONATH N, et al. Autoregressive structured prediction with language models[C]// Findings of the Association for Computational Linguistics: EMNLP 2022. Stroudsburg: ACL, 2022: 993-1005. |
| [32] | ZHONG Z, CHEN D. A frustratingly easy approach for entity and relation extraction[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 50-61. |
| [33] | DOZAT T, MANNING C D. Deep biaffine attention for neural dependency parsing[EB/OL]. [2024-10-13]. . |
| [34] | LUAN Y, WADDEN D, HE L, et al. A general framework for information extraction using dynamic span graphs[C]// Proceedings of the 2019 Conference of the North Association for Computational Linguistics, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 3036-3046. |
| [35] | WU W, WANG F, YUAN A, et al. CorefQA: coreference resolution as query-based span prediction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6953-6963. |
| [1] | Wei ZHANG, Jiaxiang NIU, Jichao MA, Qiongxia SHEN. Chinese spelling correction model ReLM enhanced with deep semantic features [J]. Journal of Computer Applications, 2025, 45(8): 2484-2490. |
| [2] | Zhiyuan WANG, Tao PENG, Jie YANG. Integrating internal and external data for out-of-distribution detection training and testing [J]. Journal of Computer Applications, 2025, 45(8): 2497-2506. |
| [3] | Bingjie QIU, Chaoqun ZHANG, Weidong TANG, Bicheng LIANG, Danyang CUI, Haisheng LUO, Qiming CHEN. Zero-shot relation extraction model based on dual contrastive learning [J]. Journal of Computer Applications, 2025, 45(11): 3555-3563. |
| [4] | Bin LI, Min LIN, Siriguleng, Yingjie GAO, Yurong WANG, Shujun ZHANG. Joint entity-relation extraction method for ancient Chinese books based on prompt learning and global pointer network [J]. Journal of Computer Applications, 2025, 45(1): 75-81. |
| [5] | Chao WEI, Yanping CHEN, Kai WANG, Yongbin QIN, Ruizhang HUANG. Relation extraction method based on mask prompt and gated memory network calibration [J]. Journal of Computer Applications, 2024, 44(6): 1713-1719. |
| [6] | Menglin HUANG, Lei DUAN, Yuanhao ZHANG, Peiyan WANG, Renhao LI. Prompt learning based unsupervised relation extraction model [J]. Journal of Computer Applications, 2023, 43(7): 2010-2016. |
| [7] | WU Saisai, LIANG Xiaohe, XIE Nengfu, ZHOU Ailian, HAO Xinning. Annotation method for joint extraction of domain-oriented entities and relations [J]. Journal of Computer Applications, 2021, 41(10): 2858-2863. |
| [8] | LI Ziqiang, WANG Zhengyong, CHEN Honggang, LI Linyi, HE Xiaohai. Video abnormal behavior detection based on dual prediction model of appearance and motion features [J]. Journal of Computer Applications, 2021, 41(10): 2997-3003. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||