Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1713-1719.DOI: 10.11772/j.issn.1001-9081.2023060818
Special Issue: CCF第38届中国计算机应用大会 (CCF NCCA 2023)
• The 38th CCF National Conference of Computer Applications (CCF NCCA 2023) • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Chao WEI1,2,3, Yanping CHEN1,2,3( ), Kai WANG1,2,3, Yongbin QIN1,2,3, Ruizhang HUANG1,2,3
), Kai WANG1,2,3, Yongbin QIN1,2,3, Ruizhang HUANG1,2,3
												  
						
						
						
					
				
Received:2023-06-26
															
							
																	Revised:2023-08-16
															
							
																	Accepted:2023-08-21
															
							
							
																	Online:2023-08-30
															
							
																	Published:2024-06-10
															
							
						Contact:
								Yanping CHEN   
													About author:WEI Chao, born in 1999, M. S. candidate His research interests include natural language processing, relation extraction.Supported by:
        
                   
            魏超1,2,3, 陈艳平1,2,3( ), 王凯1,2,3, 秦永彬1,2,3, 黄瑞章1,2,3
), 王凯1,2,3, 秦永彬1,2,3, 黄瑞章1,2,3
                  
        
        
        
        
    
通讯作者:
					陈艳平
							作者简介:魏超(1999—),男,贵州毕节人,硕士研究生,主要研究方向:自然语言处理、关系抽取基金资助:CLC Number:
Chao WEI, Yanping CHEN, Kai WANG, Yongbin QIN, Ruizhang HUANG. Relation extraction method based on mask prompt and gated memory network calibration[J]. Journal of Computer Applications, 2024, 44(6): 1713-1719.
魏超, 陈艳平, 王凯, 秦永彬, 黄瑞章. 基于掩码提示与门控记忆网络校准的关系抽取方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1713-1719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060818
| 超参数 | 实验设置 | 超参数 | 实验设置 | 
|---|---|---|---|
| PLM | RoBERTa_LARGE | 迭代次数 | 20 | 
| 学习率 | 10-5 | 失活率 | 0.1 | 
| 最大句长 | 128/512 | 随机种子数 | 314 159 | 
| 训练批次 | 32 | 
Tab. 1 Hyperparameter settings
| 超参数 | 实验设置 | 超参数 | 实验设置 | 
|---|---|---|---|
| PLM | RoBERTa_LARGE | 迭代次数 | 20 | 
| 学习率 | 10-5 | 失活率 | 0.1 | 
| 最大句长 | 128/512 | 随机种子数 | 314 159 | 
| 训练批次 | 32 | 
| 方法 | P | R | F1 | 
|---|---|---|---|
| CR-CNN | 83.7 | 84.7 | 84.1 | 
| Multi-Channel | — | — | 84.6 | 
| MixCNN | 83.1 | 86.6 | 84.8 | 
| TACNN | — | — | 85.3 | 
| TRE | 88.0 | 86.2 | 87.1 | 
| PTR | 88.4 | 89.8 | 89.1 | 
| KnowPrompt | — | — | 90.2 | 
| RELA | — | — | 90.4 | 
| Indicator-aware | 90.6 | 90.1 | 90.4 | 
| KLG | — | — | 90.5 | 
| SPOT | 89.9 | 91.4 | 90.6 | 
| CPA | 91.4 | 90.2 | 90.8 | 
| MGMNC | 90.8 | 92.0 | 91.4 | 
Tab. 2 Experimental results of various methods on SemEval dataset
| 方法 | P | R | F1 | 
|---|---|---|---|
| CR-CNN | 83.7 | 84.7 | 84.1 | 
| Multi-Channel | — | — | 84.6 | 
| MixCNN | 83.1 | 86.6 | 84.8 | 
| TACNN | — | — | 85.3 | 
| TRE | 88.0 | 86.2 | 87.1 | 
| PTR | 88.4 | 89.8 | 89.1 | 
| KnowPrompt | — | — | 90.2 | 
| RELA | — | — | 90.4 | 
| Indicator-aware | 90.6 | 90.1 | 90.4 | 
| KLG | — | — | 90.5 | 
| SPOT | 89.9 | 91.4 | 90.6 | 
| CPA | 91.4 | 90.2 | 90.8 | 
| MGMNC | 90.8 | 92.0 | 91.4 | 
| 方法 | F1 | 方法 | F1 | 
|---|---|---|---|
| CNN | 52.4 | SR-BRCNN | 65.9 | 
| CR-CNN | 54.1 | BERT-CNN | 77.1 | 
| BRCNN | 55.6 | MGMNC | 82.8 | 
Tab.3 Experimental results of various methods on CLTC dataset
| 方法 | F1 | 方法 | F1 | 
|---|---|---|---|
| CNN | 52.4 | SR-BRCNN | 65.9 | 
| CR-CNN | 54.1 | BERT-CNN | 77.1 | 
| BRCNN | 55.6 | MGMNC | 82.8 | 
| 模型 | SemEval | SciERC | ||||
|---|---|---|---|---|---|---|
| P | R | F1 | P | R | F1 | |
| REBEL | — | — | 82.0 | — | — | 86.3 | 
| RELA | — | — | 90.4 | — | — | 90.3 | 
| MGMNC | 90.8 | 92.0 | 91.4 | 90.7 | 91.3 | 91.0 | 
Tab. 4 Comparison experiment results between MGMNC and generative models
| 模型 | SemEval | SciERC | ||||
|---|---|---|---|---|---|---|
| P | R | F1 | P | R | F1 | |
| REBEL | — | — | 82.0 | — | — | 86.3 | 
| RELA | — | — | 90.4 | — | — | 90.3 | 
| MGMNC | 90.8 | 92.0 | 91.4 | 90.7 | 91.3 | 91.0 | 
| 关系类别 | PTR | MGMNC | ||||
|---|---|---|---|---|---|---|
| P | R | F1 | P | R | F1 | |
| Component‑Whole | 90.03 | 86.86 | 88.42 | 89.46 | 89.74 | 89.60 | 
| Instrument‑Agency | 87.67 | 82.05 | 84.77 | 88.16 | 85.90 | 87.01 | 
| Member‑Collection | 86.08 | 87.55 | 86.81 | 88.61 | 90.13 | 89.36 | 
| Cause‑Effect | 90.99 | 95.43 | 93.15 | 92.35 | 95.73 | 94.01 | 
| Entity‑Destination | 90.49 | 94.52 | 92.46 | 93.65 | 95.89 | 94.75 | 
| Content‑Container | 89.84 | 87.50 | 88.65 | 92.82 | 94.27 | 93.54 | 
| Message‑Topic | 89.86 | 95.02 | 92.36 | 92.37 | 92.72 | 92.54 | 
| Product‑Producer | 83.92 | 92.64 | 88.07 | 90.17 | 91.34 | 90.75 | 
| Entity‑Origin | 88.35 | 85.27 | 86.79 | 88.42 | 88.76 | 88.59 | 
Tab. 5 Performance comparison between MGMNC amd PTR on various relation classes
| 关系类别 | PTR | MGMNC | ||||
|---|---|---|---|---|---|---|
| P | R | F1 | P | R | F1 | |
| Component‑Whole | 90.03 | 86.86 | 88.42 | 89.46 | 89.74 | 89.60 | 
| Instrument‑Agency | 87.67 | 82.05 | 84.77 | 88.16 | 85.90 | 87.01 | 
| Member‑Collection | 86.08 | 87.55 | 86.81 | 88.61 | 90.13 | 89.36 | 
| Cause‑Effect | 90.99 | 95.43 | 93.15 | 92.35 | 95.73 | 94.01 | 
| Entity‑Destination | 90.49 | 94.52 | 92.46 | 93.65 | 95.89 | 94.75 | 
| Content‑Container | 89.84 | 87.50 | 88.65 | 92.82 | 94.27 | 93.54 | 
| Message‑Topic | 89.86 | 95.02 | 92.36 | 92.37 | 92.72 | 92.54 | 
| Product‑Producer | 83.92 | 92.64 | 88.07 | 90.17 | 91.34 | 90.75 | 
| Entity‑Origin | 88.35 | 85.27 | 86.79 | 88.42 | 88.76 | 88.59 | 
| GMN | MAM | P | R | F1 | 
|---|---|---|---|---|
| × | × | 88.8 | 90.8 | 89.7 | 
| × | √ | 90.2 | 90.8 | 90.4 | 
| √ | × | 90.3 | 91.5 | 90.9 | 
| √ | √ | 90.8 | 92.0 | 91.4 | 
Tab. 6 Ablation experiment results
| GMN | MAM | P | R | F1 | 
|---|---|---|---|---|
| × | × | 88.8 | 90.8 | 89.7 | 
| × | √ | 90.2 | 90.8 | 90.4 | 
| √ | × | 90.3 | 91.5 | 90.9 | 
| √ | √ | 90.8 | 92.0 | 91.4 | 
| 设置 | P | R | F1 | 
|---|---|---|---|
| 无GMN | 90.2 | 90.8 | 90.4 | 
| 单GMN | 89.5 | 92.5 | 91.0 | 
| 双GMN | 90.8 | 92.0 | 91.4 | 
Tab. 7 Comparison results of GMN calibration
| 设置 | P | R | F1 | 
|---|---|---|---|
| 无GMN | 90.2 | 90.8 | 90.4 | 
| 单GMN | 89.5 | 92.5 | 91.0 | 
| 双GMN | 90.8 | 92.0 | 91.4 | 
| 1 | ZHOU G D, SU J, ZHANG J, et al. Exploring various knowledge in relation extraction [C]// Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2005: 427-434. | 
| 2 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4471-4186. | 
| 3 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized bert pretraining approach [EB/OL]. [2023-07-27]. . | 
| 4 | CHEN Y, YANG W, WANG K, et al. A neuralized feature engineering method for entity relation extraction [J]. Neural Network, 2021, 141: 249-260. | 
| 5 | ZHOU W, CHEN M. An improved baseline for sentence-level relation extraction [C]// Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg: ACL, 2022: 161-168. | 
| 6 | QIN Y, YANG W, WANG K, et al. Entity relation extraction based on entity indicators [J]. Symmetry, 2021, 13(4): 539. | 
| 7 | 龚汝鑫,余肖生.基于BERT-BILSTM的医疗文本关系提取方法[J]. 计算机技术与发展,2022,32(4):186-192. | 
| GONG R X, YU X S. Relation extraction method of medical texts based on BERT-BILSTM [J]. Computer Technology and Development, 2022, 32(4): 186-192. | |
| 8 | SCHICK T, SCHÜTZE H. Exploiting cloze-questions for few-shot text classification and natural language inference [C]// Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg: ACL, 2021: 255-269. | 
| 9 | TAM D, MENON R R, BANSAL M, et al. Improving and simplifying pattern exploiting training [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 4980-4991. | 
| 10 | LI D, HU B, CHEN Q. Prompt-based text entailment for low-resource named entity recognition [C]// Proceedings of the 29th International Conference on Computational Linguistics.[S.l.]: International Committee on Computational Linguistics, 2022: 1896-1903. | 
| 11 | LIU P, YUAN W, FU J, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing [J]. ACM Computing Surveys, 2023, 55(9): 195. | 
| 12 | CHEN Y, ZHENG Q, CHEN P. Feature assembly method for extracting relations in Chinese [J]. Artificial Intelligence, 2015, 228: 179-194. | 
| 13 | ZHAO S, GRISHMAN R. Extracting relations with integrated information using kernel methods [C]// Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2005: 419-426. | 
| 14 | ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network [C]// Proceedings of 25th International Conference on Computational Linguistics. Stroudsburg: ACL, 2014: 2335-2344. | 
| 15 | GENG Z Q, CHEN G F, HAN Y M, et al. Semantic relation extraction using sequential and tree-structured LSTM with attention [J]. Information Sciences, 2020, 509: 183-192. | 
| 16 | BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2020: 1877-1901. | 
| 17 | 武小平,张强,赵芳.基于BERT的心血管医疗指南实体关系抽取方法[J].计算机应用,2021,41(1):145-149. | 
| WU X P, ZHANG Q, ZHAO F. Entity relation extraction method for guidelines of cardiovascular disease based on bidirectional encoder representation from transformers [J]. Journal of Computer Applications, 2021, 41(1): 145-149. | |
| 18 | LI R, LI D, YANG J, et al. Joint extraction of entities and relations via an entity correlated attention neural model [J]. Information Sciences, 2021, 581: 179-193. | 
| 19 | ZHAO W, ZHAO S, CHEN S, et al. Entity and relation collaborative extraction approach based on multi-head attention and gated mechanism [J]. Connection Science, 2022, 34(1): 670-686. | 
| 20 | 杨卫哲,秦永彬,黄瑞章,等.面向中文关系抽取的句子结构获取方法[J]. 数据采集与处理,2021,36(3):605-620. | 
| YANG W Z, QIN Y B, HUANG R Z, et al.Sentence structure acquisition method for Chinese relation extraction [J]. Journal of Data Acquisition & Processing, 2021, 36(3): 605-620. | |
| 21 | HAN X, ZHAO W, DING N, et al. PTR: prompt tuning with rules for text classification [J]. AI Open, 2022, 3: 182-192. | 
| 22 | GAO T Y, FISCH A, CHEN D Q. Making pre-trained language models better few-shot learners [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 3816-3830. | 
| 23 | SHIN T, RAZEGHI Y, ROBERT L, et al. AutoPrompt: eliciting knowledge from language models with automatically generated prompts [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 4222-4235. | 
| 24 | WANG K, CHEN Y, WEN K, et al. Cue prompt adapting model for relation extraction [J]. Connection Science, 2022, 35(1): 2161478. | 
| 25 | CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724-1734. | 
| 26 | LIU Y, HU J, WAN X, et al. Learn from relation information: towards prototype representation rectification for few-shot relation extraction [C]// Findings of the Association for Computational Linguistics, NAACL 2022. Stroudsburg: ACL, 2022: 1822-1831. | 
| 27 | HENDRICKX I, KIM S N, KOZAREVA Z, et al. SemEval-2010 task 8: multi-way classification of semantic relations between pairs of nominals [C]// Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2010: 33-38. | 
| 28 | XU J, WEN J, SUN X, et al. A discourse-level named entity recognition and relation extraction dataset for Chinese literature text [EB/OL].[2023-07-27].. | 
| 29 | LUAN Y, HE L, OSTENDORG M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3219-3232. | 
| 30 | DOS SANTOS C, XIANG B, ZHOU B. Classifying relations by ranking with convolutional neural networks [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2015: 626-634. | 
| 31 | CHEN Y, WANG K, YANG W, et al. A multi-channel deep neural network for relation extraction [J]. IEEE Access, 2020, 8: 13195-13203. | 
| 32 | ZHENG S, XU J, ZHOU P, et al. A neural network framework for relation extraction: learning entity semantic and relation pattern [J]. Knowledge-Based Systems, 2016, 114: 12-23. | 
| 33 | GENG Z, LI J, HAN Y, et al. Novel target attention convolutional neural network for relation classification [J]. Information Sciences, 2022, 597: 24-37. | 
| 34 | ALT C, HÜBNER M, HENNIG L. Improving relation extraction by pre-trained language representations [EB/OL]. [2023-07-27]. . | 
| 35 | CHEN X, ZHANG N, XIE X, et al. KnowPrompt: knowledge-aware prompt-tuning with synergistic optimization for relation extraction [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2778-2788. | 
| 36 | LI B, YU D, YE W, et al. Sequence generation with label augmentation for relation extraction [EB/OL]. [2023-07-27]. . | 
| 37 | TAO Q, LUO X, WANG H. Enhancing relation extraction using syntactic indicators and sentential contexts [C]// Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2019: 1574-1580. | 
| 38 | LI B, YE W, ZHANG J, et al. Reviewing labels: label graph network with top-k prediction set for relation extraction [EB/OL]. [2023-07-27]. . | 
| 39 | LI J, KATSIS Y, BALDWIN T, et al. SPOT: knowledge-enhanced language representations for information extraction [C]// Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 1124-1134. | 
| 40 | CAI R, ZHANG X, WANG H. Bidirectional recurrent convolutional neural network for relation classification [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 756-765. | 
| 41 | WEN J, SUN X, REN X, et al. Structure regularized neural network for entity relation classification for chinese literature text [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Stroudsburg: ACL, 2018: 365-370. | 
| 42 | HUGUET CABOT P-L, NAVIGLI R. REBEL: relation extraction by end-to-end language generation [C]// Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg: ACL, 2021: 2370-2381. | 
| [1] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. | 
| [2] | Chenghanyu ZHANG, Yuzhe LIN, Chengke TAN, Junfan WANG, Yeting GU, Zhekang DONG, Mingyu GAO. New dish recognition network based on lightweight YOLOv5 [J]. Journal of Computer Applications, 2024, 44(2): 638-644. | 
| [3] | Ailing QI, Xuanlin WANG. Fine-grained image recognition based on mid-level subtle feature extraction and multi-scale feature fusion [J]. Journal of Computer Applications, 2023, 43(8): 2556-2563. | 
| [4] | Menglin HUANG, Lei DUAN, Yuanhao ZHANG, Peiyan WANG, Renhao LI. Prompt learning based unsupervised relation extraction model [J]. Journal of Computer Applications, 2023, 43(7): 2010-2016. | 
| [5] | Jingsheng LEI, Kaijun LA, Shengying YANG, Yi WU. Joint entity and relation extraction based on contextual semantic enhancement [J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. | 
| [6] | Qingyu JIA, Liang CHANG, Xianyi YANG, Baohua QIANG, Shihao ZHANG, Wu XIE, Minghao YANG. Real-time reconstruction method of visual information for manipulator operation [J]. Journal of Computer Applications, 2023, 43(4): 1255-1260. | 
| [7] | Jianqing GAO, Yanhui TU, Feng MA, Zhonghua FU. Progressive ratio mask-based adaptive noise estimation method [J]. Journal of Computer Applications, 2023, 43(4): 1303-1308. | 
| [8] | Chengyu LIN, Lei WANG, Cong XUE. Weakly-supervised text classification with label semantic enhancement [J]. Journal of Computer Applications, 2023, 43(2): 335-342. | 
| [9] | Liang XU, Chun ZHANG, Ning ZHANG, Xuetao TIAN. Zero-shot relation extraction model via multi-template fusion in Prompt [J]. Journal of Computer Applications, 2023, 43(12): 3668-3675. | 
| [10] | Jinwei PU, Qingjian GAO, Xin ZHENG, Yinghui XU. SM4 resistant differential power analysis lightweight threshold implementation [J]. Journal of Computer Applications, 2023, 43(11): 3490-3496. | 
| [11] | Yate FENG, Yimin WEN. Vietnamese scene text detection based on modified Mask R-CNN [J]. Journal of Computer Applications, 2021, 41(12): 3551-3557. | 
| [12] | ZENG Zhaoxin, LIU Jun. Microscopic image segmentation method of C.elegans based on deep learning [J]. Journal of Computer Applications, 2020, 40(5): 1453-1459. | 
| [13] | YUAN Linjun, JIANG Min, LUO Dunlang, JIANG Jiajun, GUO Jia. Portrait inpainting based on generative adversarial networks [J]. Journal of Computer Applications, 2020, 40(3): 842-846. | 
| [14] | WANG Yajie, ZHANG Yunbo, WU Yanyan, DING Aodong, QI Bingzhi. General chess piece positioning method under uneven illumination [J]. Journal of Computer Applications, 2020, 40(12): 3490-3498. | 
| [15] | FENG Tao, CHEN Bin, ZHANG Yuefei. Chromosome image segmentation framework based on improved Mask R-CNN [J]. Journal of Computer Applications, 2020, 40(11): 3332-3339. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||