Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 224-232.DOI: 10.11772/j.issn.1001-9081.2025010139
• Multimedia computing and computer simulation • Previous Articles Next Articles
Wei GUO, Manting WANG(
), Haicheng QU
Received:2025-02-13
Revised:2025-04-07
Accepted:2025-04-08
Online:2026-01-10
Published:2026-01-10
Contact:
Manting WANG
About author:GUO Wei, born in 1970, M. S., associate professor. Her research interests include computer vision, intelligent image processing.Supported by:通讯作者:
王曼婷
作者简介:郭伟(1970—),女,辽宁阜新人,副教授,硕士, CCF会员,主要研究方向:计算机视觉、智能图像处理基金资助:CLC Number:
Wei GUO, Manting WANG, Haicheng QU. Underwater image enhancement algorithm based on multi-scale perception and multi-dimensional space fusion[J]. Journal of Computer Applications, 2026, 46(1): 224-232.
郭伟, 王曼婷, 曲海成. 基于多尺度感知的多维空间融合水下图像增强算法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 224-232.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010139
| 数据集 | 训练集样本数 | 测试集样本数 | 合计 |
|---|---|---|---|
| EUVP1 | 4 995 | 555 | 5 550 |
| EUVP2 | 3 330 | 370 | 3 700 |
| EUVP3 | 1 967 | 218 | 2 185 |
| UIEB | 801 | 89 | 890 |
| LSUI | 3 851 | 428 | 4 279 |
Tab. 1 Partitioning of datasets
| 数据集 | 训练集样本数 | 测试集样本数 | 合计 |
|---|---|---|---|
| EUVP1 | 4 995 | 555 | 5 550 |
| EUVP2 | 3 330 | 370 | 3 700 |
| EUVP3 | 1 967 | 218 | 2 185 |
| UIEB | 801 | 89 | 890 |
| LSUI | 3 851 | 428 | 4 279 |
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| CLAHE[ | 18.536 3 | 0.678 4 | 19.896 1 | 0.587 8 | 19.903 5 | 0.577 4 |
| HE[ | 14.632 5 | 0.654 8 | 15.651 5 | 0.612 4 | 14.854 9 | 0.569 6 |
| IBLA[ | 16.358 1 | 0.651 7 | 16.495 4 | 0.754 1 | 14.865 3 | 0.587 4 |
| CycleGAN[ | 19.102 8 | 0.768 9 | 20.633 2 | 0.720 2 | 22.402 3 | 0.789 4 |
| AttR2U-Net[ | 20.158 7 | 0.725 0 | 21.681 3 | 0.796 4 | 21.847 9 | 0.712 6 |
| STSC[ | 21.890 1 | 0.862 2 | 22.112 3 | 0.798 1 | 23.654 4 | 0.690 3 |
| WaterNet[ | 22.546 3 | 0.881 4 | 23.032 2 | 0.715 8 | 22.153 3 | 0.788 5 |
| U-Shape[ | 22.976 2 | 0.811 2 | 23.566 3 | 0.853 1 | 23.652 3 | 0.709 1 |
| Metalantis[ | 22.831 4 | 0.843 8 | 23.198 2 | 0.849 3 | 22.351 7 | 0.767 5 |
| HFM[ | 23.441 5 | 0.855 6 | 22.889 5 | 0.799 7 | 23.284 5 | 0.801 2 |
| 本文算法 | 23.033 9 | 0.895 4 | 24.655 4 | 0.866 4 | 24.865 1 | 0.813 9 |
Tab. 2 PSNR and SSIM of different algorithms
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
| CLAHE[ | 18.536 3 | 0.678 4 | 19.896 1 | 0.587 8 | 19.903 5 | 0.577 4 |
| HE[ | 14.632 5 | 0.654 8 | 15.651 5 | 0.612 4 | 14.854 9 | 0.569 6 |
| IBLA[ | 16.358 1 | 0.651 7 | 16.495 4 | 0.754 1 | 14.865 3 | 0.587 4 |
| CycleGAN[ | 19.102 8 | 0.768 9 | 20.633 2 | 0.720 2 | 22.402 3 | 0.789 4 |
| AttR2U-Net[ | 20.158 7 | 0.725 0 | 21.681 3 | 0.796 4 | 21.847 9 | 0.712 6 |
| STSC[ | 21.890 1 | 0.862 2 | 22.112 3 | 0.798 1 | 23.654 4 | 0.690 3 |
| WaterNet[ | 22.546 3 | 0.881 4 | 23.032 2 | 0.715 8 | 22.153 3 | 0.788 5 |
| U-Shape[ | 22.976 2 | 0.811 2 | 23.566 3 | 0.853 1 | 23.652 3 | 0.709 1 |
| Metalantis[ | 22.831 4 | 0.843 8 | 23.198 2 | 0.849 3 | 22.351 7 | 0.767 5 |
| HFM[ | 23.441 5 | 0.855 6 | 22.889 5 | 0.799 7 | 23.284 5 | 0.801 2 |
| 本文算法 | 23.033 9 | 0.895 4 | 24.655 4 | 0.866 4 | 24.865 1 | 0.813 9 |
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| UIQM | UCIQE | UIQM | UCIQE | UIQM | UCIQE | |
| CLAHE[ | 1.948 3 | 0.546 7 | 2.064 2 | 0.554 1 | 2.246 5 | 0.574 1 |
| HE[ | 2.036 4 | 0.511 2 | 1.956 4 | 0.541 2 | 2.345 8 | 0.535 4 |
| IBLA[ | 2.304 1 | 0.562 3 | 2.342 1 | 0.551 7 | 2.518 0 | 0.561 2 |
| CycleGAN[ | 2.742 9 | 0.556 4 | 2.982 9 | 0.523 1 | 2.839 4 | 0.603 1 |
| AttR2U-Net[ | 2.051 2 | 0.581 9 | 1.869 4 | 0.596 4 | 1.911 6 | 0.582 7 |
| STSC[ | 3.047 9 | 0.553 2 | 2.929 5 | 0.552 9 | 2.913 7 | 0.582 2 |
| WaterNet[ | 3.030 6 | 0.542 8 | 3.009 4 | 0.545 8 | 3.096 3 | 0.571 2 |
| U-Shape[ | 2.963 3 | 0.556 5 | 2.963 8 | 0.551 3 | 2.935 8 | 0.584 1 |
| Metalantis[ | 3.019 5 | 0.514 4 | 2.953 3 | 0.544 8 | 2.841 2 | 0.563 1 |
| HFM[ | 2.951 4 | 0.541 7 | 2.871 4 | 0.551 3 | 3.001 9 | 0.554 7 |
| 本文算法 | 3.102 8 | 0.580 1 | 3.015 4 | 0.563 9 | 3.056 7 | 0.593 1 |
Tab. 3 UIQM and UCIQE of different algorithms
| 算法 | EUVP1 | EUVP2 | EUVP3 | |||
|---|---|---|---|---|---|---|
| UIQM | UCIQE | UIQM | UCIQE | UIQM | UCIQE | |
| CLAHE[ | 1.948 3 | 0.546 7 | 2.064 2 | 0.554 1 | 2.246 5 | 0.574 1 |
| HE[ | 2.036 4 | 0.511 2 | 1.956 4 | 0.541 2 | 2.345 8 | 0.535 4 |
| IBLA[ | 2.304 1 | 0.562 3 | 2.342 1 | 0.551 7 | 2.518 0 | 0.561 2 |
| CycleGAN[ | 2.742 9 | 0.556 4 | 2.982 9 | 0.523 1 | 2.839 4 | 0.603 1 |
| AttR2U-Net[ | 2.051 2 | 0.581 9 | 1.869 4 | 0.596 4 | 1.911 6 | 0.582 7 |
| STSC[ | 3.047 9 | 0.553 2 | 2.929 5 | 0.552 9 | 2.913 7 | 0.582 2 |
| WaterNet[ | 3.030 6 | 0.542 8 | 3.009 4 | 0.545 8 | 3.096 3 | 0.571 2 |
| U-Shape[ | 2.963 3 | 0.556 5 | 2.963 8 | 0.551 3 | 2.935 8 | 0.584 1 |
| Metalantis[ | 3.019 5 | 0.514 4 | 2.953 3 | 0.544 8 | 2.841 2 | 0.563 1 |
| HFM[ | 2.951 4 | 0.541 7 | 2.871 4 | 0.551 3 | 3.001 9 | 0.554 7 |
| 本文算法 | 3.102 8 | 0.580 1 | 3.015 4 | 0.563 9 | 3.056 7 | 0.593 1 |
| 算法 | 模型参数量/106 | 算法运行时间/h | 浮点运算量/GFLOPs |
|---|---|---|---|
| CLAHE[ | — | 0.770 7 | 0.010 |
| HE[ | — | 0.735 0 | 0.005 |
| IBLA[ | — | 3.675 0 | 0.100 |
| AttR2U-Net[ | — | 10.634 0 | 25.000 |
| CycleGAN[ | 32.286 9 | 99.219 4 | 120.000 |
| STSC[ | 28.687 3 | 9.441 1 | 45.000 |
| WaterNet[ | 10.091 0 | 36.481 4 | 18.000 |
| U-Shape[ | 88.134 8 | 15.727 2 | 85.000 |
| 本文算法 | 86.372 1 | 6.583 5 | 40.000 |
Tab. 4 Performance indicators of different algorithms
| 算法 | 模型参数量/106 | 算法运行时间/h | 浮点运算量/GFLOPs |
|---|---|---|---|
| CLAHE[ | — | 0.770 7 | 0.010 |
| HE[ | — | 0.735 0 | 0.005 |
| IBLA[ | — | 3.675 0 | 0.100 |
| AttR2U-Net[ | — | 10.634 0 | 25.000 |
| CycleGAN[ | 32.286 9 | 99.219 4 | 120.000 |
| STSC[ | 28.687 3 | 9.441 1 | 45.000 |
| WaterNet[ | 10.091 0 | 36.481 4 | 18.000 |
| U-Shape[ | 88.134 8 | 15.727 2 | 85.000 |
| 本文算法 | 86.372 1 | 6.583 5 | 40.000 |
| 模块 | PSNR/dB | SSIM | UIQM | UCIQE | 模型参数量/106 | 算法运行时间/h |
|---|---|---|---|---|---|---|
| U | 22.156 3 | 0.784 0 | 2.921 4 | 0.536 4 | 72.105 6 | 4.563 9 |
| U+F | 23.563 1 | 0.815 8 | 2.964 2 | 0.556 1 | 82.632 9 | 5.562 1 |
| U+M | 22.635 1 | 0.794 6 | 2.998 4 | 0.543 2 | 73.252 1 | 5.232 0 |
| U+A | 22.325 6 | 0.781 2 | 2.941 5 | 0.539 4 | 73.859 4 | 5.263 5 |
| U+F+M | 23.659 4 | 0.835 6 | 2.998 4 | 0.543 4 | 74.289 6 | 6.389 2 |
| U+F+A | 24.655 4 | 0.819 8 | 2.923 1 | 0.551 0 | 74.658 9 | 6.056 4 |
| U+F+M+A | 24.865 1 | 0.866 4 | 3.015 4 | 0.563 9 | 86.526 4 | 6.583 5 |
Tab. 5 Ablation experiments results
| 模块 | PSNR/dB | SSIM | UIQM | UCIQE | 模型参数量/106 | 算法运行时间/h |
|---|---|---|---|---|---|---|
| U | 22.156 3 | 0.784 0 | 2.921 4 | 0.536 4 | 72.105 6 | 4.563 9 |
| U+F | 23.563 1 | 0.815 8 | 2.964 2 | 0.556 1 | 82.632 9 | 5.562 1 |
| U+M | 22.635 1 | 0.794 6 | 2.998 4 | 0.543 2 | 73.252 1 | 5.232 0 |
| U+A | 22.325 6 | 0.781 2 | 2.941 5 | 0.539 4 | 73.859 4 | 5.263 5 |
| U+F+M | 23.659 4 | 0.835 6 | 2.998 4 | 0.543 4 | 74.289 6 | 6.389 2 |
| U+F+A | 24.655 4 | 0.819 8 | 2.923 1 | 0.551 0 | 74.658 9 | 6.056 4 |
| U+F+M+A | 24.865 1 | 0.866 4 | 3.015 4 | 0.563 9 | 86.526 4 | 6.583 5 |
| [1] | 李大海,李冰涛,王振东.基于改进YOLOv8的水下目标检测算法[J].计算机应用, 2024, 44(11): 3610-3616. |
| LI D H, LI B T, WANG Z D. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. | |
| [2] | HAN M, LYU Z, QIU T, et al. A review on intelligence dehazing and color restoration for underwater images [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(5): 1820-1832. |
| [3] | ANWAR S, LI C. Diving deeper into underwater image enhancement: a survey [J]. Signal Processing: Image Communication, 2020, 89: No.115978. |
| [4] | LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement [J]. Pattern Recognition, 2020, 98: No.107038. |
| [5] | REZA A M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for real-time image enhancement [J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35-44. |
| [6] | GONZALEZ R C, WOODS R E. Digital image processing [M]. London: Pearson, 2018. |
| [7] | PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption [J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579-1594. |
| [8] | CARLEVARIS-BIANCO N, MOHAN A, EUSTICE R M. Initial results in underwater single image dehazing [C]// Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE. Piscataway: IEEE, 2010: 1-8. |
| [9] | HUANG D, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition [C]// Proceedings of the 2018 International Conference on Multimedia Modeling, LNCS 10704. Cham: Springer, 2018: 453-465. |
| [10] | 李慧,贾炳志,王晨曦,等.基于Swin Transformer的生成对抗网络水下图像增强模型[J].计算机应用, 2025, 45(5): 1439-1446. |
| LI H, JIA B Z, WANG C X, et al. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. | |
| [11] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. |
| [12] | WANG D, MA L, LIU R, et al. Semantic-aware texture-structure feature collaboration for underwater image enhancement [C]// Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 4592-4598. |
| [13] | LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond [J]. IEEE Transactions on Image Processing, 2020, 29: 4376-4389. |
| [14] | PENG L, ZHU C, BIAN L. U-shape Transformer for underwater image enhancement [J]. IEEE Transactions on Image Processing, 2023, 32: 3066-3079. |
| [15] | ZHANG Y, CHANDLER D M, LESZCZUK M. Retinex-based underwater image enhancement via adaptive color correction and hierarchical U-shape Transformer [J]. Optics Express, 2024, 32(14): 24018-24040. |
| [16] | WANG H, ZHANG W, BAI L, et al. Metalantis: a comprehensive underwater image enhancement framework [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5618319. |
| [17] | AN S, XU L, DENG Z, et al. HFM: a hybrid fusion method for underwater image enhancement [J]. Engineering Applications of Artificial Intelligence, 2024, 127(Pt A): No.107219. |
| [18] | DING X, ZHANG X, MA N, et al. RepVGG: Making VGG-style ConvNets great again [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737. |
| [19] | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. |
| [20] | WEBB B S, DHRUV N T, SOLOMON S G, et al. Early and late mechanisms of surround suppression in striate cortex of macaque [J]. Journal of Neuroscience, 2005, 25(50): 11666-11675. |
| [21] | LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599-2613. |
| [22] | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
| [23] | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. |
| [24] | ISLAM M J, XIA Y, SATTAR J. Fast underwater image enhancement for improved visual perception [J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234. |
| [25] | ZHANG L, ER M J, WANG Z, et al. Underwater image enhancement based on AttR2U-Net and multi-residual networks [C]// Proceedings of the 5th International Conference on Intelligent Autonomous Systems. Piscataway: IEEE, 2022: 90-95. |
| [26] | KORHONEN J, YOU J. Peak signal-to-noise ratio revisited: is simple beautiful? [C]// Proceedings of the 4th International Workshop on Quality of Multimedia Experience. Piscataway: IEEE, 2012: 37-38. |
| [27] | WANG Z, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment [C]// Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers — Volume 2. Piscataway: IEEE, 2003: 1398-1402. |
| [28] | PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures [J]. IEEE Journal of Oceanic Engineering, 2015, 41(3): 541-551. |
| [29] | YANG M, SOWMYA A. An underwater color image quality evaluation metric [J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. |
| [1] | Xiuyan ZHANG, Wentao LIU, Xin WANG. Feature extraction method of flight pitch operation based on quick access recorder data [J]. Journal of Computer Applications, 2026, 46(1): 322-330. |
| [2] | Chuang WANG, Lu YU, Jianwei CHEN, Cheng PAN, Wenbo DU. Review of open set domain adaptation [J]. Journal of Computer Applications, 2025, 45(9): 2727-2736. |
| [3] | Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays [J]. Journal of Computer Applications, 2025, 45(7): 2369-2377. |
| [4] | Qingli CHEN, Yuanbo GUO, Chen FANG. Clustering federated learning algorithm for heterogeneous data [J]. Journal of Computer Applications, 2025, 45(4): 1086-1094. |
| [5] | Yu WANG, Xianjin FANG, Gaoming YANG, Yifeng DING, Xinlu YANG. Active defense against face forgery based on attention mask and feature extraction [J]. Journal of Computer Applications, 2025, 45(3): 904-910. |
| [6] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. |
| [7] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
| [8] | Jing HUANG, Xin PENG, Wenhao LI, Kai HU, Teng WANG, Yamin HUANG, Yuanqiao WEN. High-quality sonar image generation method based on multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(12): 3987-3994. |
| [9] | Xiaoman WANG, Yanping CHEN, Caiwei YANG, Ruizhang HUANG, Yongbin QIN. Nested named entity recognition method for multi-directional gradient feature extraction [J]. Journal of Computer Applications, 2025, 45(11): 3547-3554. |
| [10] | Bingjie QIU, Chaoqun ZHANG, Weidong TANG, Bicheng LIANG, Danyang CUI, Haisheng LUO, Qiming CHEN. Zero-shot relation extraction model based on dual contrastive learning [J]. Journal of Computer Applications, 2025, 45(11): 3555-3563. |
| [11] | Lianqing WEN, Ye TAO, Yunlong TIAN, Li NIU, Hongxia SUN. Flow-based lightweight high-quality text-to-speech conversion method [J]. Journal of Computer Applications, 2025, 45(10): 3277-3283. |
| [12] | Pengcheng SONG, Lijun GUO, Rong ZHANG. Weakly supervised video anomaly detection with local-global temporal dependency [J]. Journal of Computer Applications, 2025, 45(1): 240-246. |
| [13] | Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling [J]. Journal of Computer Applications, 2025, 45(1): 214-222. |
| [14] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
| [15] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||