Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3987-3994.DOI: 10.11772/j.issn.1001-9081.2024121742
• Multimedia computing and computer simulation • Previous Articles Next Articles
Jing HUANG1,2, Xin PENG2, Wenhao LI2, Kai HU2, Teng WANG2, Yamin HUANG3,4, Yuanqiao WEN3,4
Received:2024-12-10
Revised:2025-03-14
Accepted:2025-03-20
Online:2025-04-08
Published:2025-12-10
Contact:
Jing HUANG
About author:HUANG Jing, born in 1977, Ph. D., associate professor. His research interests include computer vision, artificial intelligence.Supported by:黄靖1,2, 彭鑫2, 李文豪2, 胡凯2, 王腾2, 黄亚敏3,4, 文元桥3,4
通讯作者:
黄靖
作者简介:黄靖(1977—),男,湖北潜江人,副教授,博士,主要研究方向:计算机视觉、人工智能基金资助:CLC Number:
Jing HUANG, Xin PENG, Wenhao LI, Kai HU, Teng WANG, Yamin HUANG, Yuanqiao WEN. High-quality sonar image generation method based on multi-scale feature fusion[J]. Journal of Computer Applications, 2025, 45(12): 3987-3994.
黄靖, 彭鑫, 李文豪, 胡凯, 王腾, 黄亚敏, 文元桥. 多尺度特征融合的高质量声呐图像生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3987-3994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121742
| 方法 | PSNR/dB | SSIM |
|---|---|---|
| 双三次插值 | 20.62 | 0.32 |
| SRCNN | 21.42 | 0.51 |
| SRGAN | 23.53 | 0.53 |
| ESRGAN | 24.57 | 0.56 |
| 本文方法 | 26.21 | 0.59 |
Tab. 1 Comparison of PSNR and SSIM values of different methods
| 方法 | PSNR/dB | SSIM |
|---|---|---|
| 双三次插值 | 20.62 | 0.32 |
| SRCNN | 21.42 | 0.51 |
| SRGAN | 23.53 | 0.53 |
| ESRGAN | 24.57 | 0.56 |
| 本文方法 | 26.21 | 0.59 |
| 模型 | 参数量/106 | PSNR/dB | SSIM |
|---|---|---|---|
| RCB | 14.3 | 22.24 | 0.55 |
| MBC | 12.3 | 23.42 | 0.61 |
| MSF | 13.6 | 24.56 | 0.60 |
Tab. 2 Comparison of structural parameters and detection results for three model architectures
| 模型 | 参数量/106 | PSNR/dB | SSIM |
|---|---|---|---|
| RCB | 14.3 | 22.24 | 0.55 |
| MBC | 12.3 | 23.42 | 0.61 |
| MSF | 13.6 | 24.56 | 0.60 |
| 对照组 | RRDB | MSA | MSF | PSNR/dB |
|---|---|---|---|---|
| 1 | 25.41 | |||
| 2 | 25.68 | |||
| 3 | 26.12 | |||
| 4 | 25.83 | |||
| 5 | 26.25 |
Tab. 3 Results of ablation experiments on sonar dataset
| 对照组 | RRDB | MSA | MSF | PSNR/dB |
|---|---|---|---|---|
| 1 | 25.41 | |||
| 2 | 25.68 | |||
| 3 | 26.12 | |||
| 4 | 25.83 | |||
| 5 | 26.25 |
| [1] | KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. [2024-11-27].. |
| [2] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
| [3] | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 6840-6851. |
| [4] | SONG J, MENG C, ERMON S. Denoising diffusion implicit models[EB/OL]. [2024-03-02].. |
| [5] | 刘彪. 基于声呐图像处理的水下目标探测关键技术研究[D]. 大理:大理大学, 2024: 16-17. |
| LIU B. Research on key technology of underwater target detection based on sonar image processing [D]. Dali: Dali University, 2024: 16-17. | |
| [6] | 魏光春,邢传玺,崔晶,等. 利用同步码字优化和正则化相结合的声呐图像降噪方法[J]. 云南民族大学学报(自然科学版), 2024, 33(2): 225-231. |
| WEI G C, XING C X, CUI J, et al. A sonar image noise reduction method that combines simultaneous codeword optimization and regulation[J]. Journal of Yunnan Minzu University (Natural Sciences Edition), 2024, 33(2): 225-231. | |
| [7] | 冯伟,刘光宇,刘彪,等. 基于自适应维纳滤波和2D-VMD的声呐图像去噪算法[J]. 南京信息工程大学学报, 2024, 16(1): 97-105. |
| FENG W, LIU G Y, LIU B, et al. Sonar image denoising algorithm based on adaptive Wiener filtering and 2D-VMD[J] Journal of Nanjing University of Information Science and Technology, 2024, 16(1): 97-105. | |
| [8] | 王成杰. 基于各向异性引导滤波与双边滤波的前视声呐图像去噪[D]. 大连:大连海事大学, 2023: 34-38. |
| WANG C J. Research on image denoising algorithm of forward-looking sonar based on anisotropic guided filter and bilateral filter[D]. Dalian: Dalian Maritime University, 2023: 34-38. | |
| [9] | 郭爱彬. 基于生成对抗网络的声呐图像生成方法研究[D]. 大连:大连海事大学, 2023: 23-27. |
| GUO A B. Research on sonar image generation method based on generative adversarial network[D]. Dalian: Dalian Maritime University, 2023: 23-27. | |
| [10] | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. |
| [11] | 刘秋逸. 基于生成对抗网络的声呐图像生成及盲去噪方法研究[D]. 哈尔滨:哈尔滨工程大学, 2020: 44-46. |
| LIU Q Y. Generative adversarial networks based sonar image synthesis and blind denoising methods[D]. Harbin: Harbin Engineering University, 2020: 44-46. | |
| [12] | LEE S, PARK B, KIM A. Deep learning from shallow dives: sonar image generation and training for underwater object detection[EB/OL]. [2024-02-27].. |
| [13] | 李响. 侧扫声纳图像目标样本生成和分类方法研究[D]. 哈尔滨:哈尔滨工程大学, 2020: 44-45. |
| LI X. Research on target sample generation and classification of side scan sonar image[D]. Harbin: Harbin Engineering University, 2020: 44-45. | |
| [14] | 马麒翔. 基于深度学习的声呐图像目标检测算法研究[D]. 南京:东南大学, 2020: 59-60. |
| MA Q X. Research on object detection algorithm of sonar image based on deep learning[D]. Nanjing: Southeast University, 2020: 59-60. | |
| [15] | 于淼. 基于深度学习的侧扫声呐图像目标检测方法研究[D]. 哈尔滨:哈尔滨工程大学, 2020: 9-11. |
| YU M. Research on target detection method of side-scan sonar images based on deep learning[D]. Harbin: Harbin Engineering University, 2020: 9-11. | |
| [16] | 梁雪灿. 基于生成对抗网络的声学图像超分辨率研究[D]. 哈尔滨:哈尔滨工程大学, 2019: 51-53. |
| LIANG X C. Research on acoustic image super-resolution based on generative adversarial network[D]. Harbin: Harbin Engineering University, 2019: 51-53. | |
| [17] | 李宝奇,黄海宁,刘纪元,等. 基于改进CycleGAN的光学图像迁移生成水下小目标合成孔径声纳图像算法研究[J]. 电子学报, 2021, 49(9): 1746-1753. |
| LI B Q, HUANG H N, LIU J Y, et al. Optical image-to-underwater small target synthetic aperture sonar image translation algorithm based on improved CycleGAN[J]. Acta Electronica Sinica, 2021, 49(9): 1746-1753. | |
| [18] | WANG Z, GUO Q, LEI M, et al. High-quality sonar image generation algorithm based on generative adversarial networks[C]// Proceedings of the 40th Chinese Control Conference. Piscataway: IEEE, 2021: 3099-3104. |
| [19] | 程文博. 基于生成对抗网络的声呐图像超分辨率算法[J]. 数字海洋与水下攻防, 2023, 6(3): 353-358. |
| CHENG W B. Sonar image super-resolution algorithm based on generative adversarial network[J]. Digital Ocean and Underwater Warfare, 2023, 6(3): 353-358. | |
| [20] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
| [21] | GURROLA-RAMOS J, DALMAU O, ALARCÓN T E. A residual dense U-Net neural network for image denoising[J]. IEEE Access, 2021, 9: 31742-31754. |
| [22] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. |
| [23] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. |
| [24] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. |
| [25] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. |
| [26] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4278-4284. |
| [27] | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
| [28] | MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks [EB/OL]. [2024-05-24].. |
| [29] | YOSHIDA Y, MIYATO T. Spectral norm regularization for improving the generalizability of deep learning [EB/OL]. [2024-05-28].. |
| [30] | CARLSON R E, FRITSCH F N. An algorithm for monotone piecewise bicubic interpolation[J]. SIAM Journal on Numerical Analysis, 1989, 26(1): 230-238. |
| [31] | DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. |
| [32] | WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]// Proceedings of the 2018 European Conference on Computer Vision Workshops, LNCS 11133. Cham: Springer, 2019: 63-79. |
| [1] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [2] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [3] | Fang WANG, Jing HU, Rui ZHANG, Wenting FAN. Medical image segmentation network with content-guided multi-angle feature fusion [J]. Journal of Computer Applications, 2025, 45(9): 3017-3025. |
| [4] | Panfeng JING, Yudong LIANG, Chaowei LI, Junru GUO, Jinyu GUO. Semi-supervised image dehazing algorithm based on teacher-student learning [J]. Journal of Computer Applications, 2025, 45(9): 2975-2983. |
| [5] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
| [6] | Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition [J]. Journal of Computer Applications, 2025, 45(9): 2838-2847. |
| [7] | Jin LI, Liqun LIU. SAR and visible image fusion based on residual Swin Transformer [J]. Journal of Computer Applications, 2025, 45(9): 2949-2956. |
| [8] | Bing YIN, Zhenhua LING, Yin LIN, Changfeng XI, Ying LIU. Emotion recognition method compatible with missing modal reasoning [J]. Journal of Computer Applications, 2025, 45(9): 2764-2772. |
| [9] | Yilin DENG, Fajiang YU. Pseudo random number generator based on LSTM and separable self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2893-2901. |
| [10] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
| [11] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
| [12] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [13] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
| [14] | Yimeng XI, Zhen DENG, Qian LIU, Libo LIU. Cross-modal information fusion for video-text retrieval [J]. Journal of Computer Applications, 2025, 45(8): 2448-2456. |
| [15] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||