In order to achieve robust, accurate and real-time recognition of surface scratches under complex texture background with uneven brightness, a surface scratch recognition method based on deep neural network was proposed. The deep neural network for surface scratch recognition consisted of a style transfer network and a focus Convolutional Neural Network (CNN). The style transfer network was used to preprocess surface scratches under complex background with uneven brightness. The style transfer networks included a feedforward conversion network and a loss network. Firstly, the style features of uniform brightness template and the perceptual features of the detected image were extracted through the loss network, and the feedforward conversion network was trained offline to obtain the optimal parameter values of network. Then, the images with uniform brightness and uniform style were generated by style transfer network. Finally, the proposed focus convolutional neural network based on focus structure was used to extract and recognize scratch features in the generated image. Taking metal surface with light change as an example, the scratch recognition experiment was carried out. The experimental results show that compared with traditional image processing methods requiring artificial designed features and traditional deep convolutional neural network, the false negative rate of scratch detection is as low as 8.54% with faster convergence speed and smoother convergence curve, and the better detection results can be obtained under different depth models with accuracy increased of about 2%. The style transfer network can retain complete scratch features with the problem of uneven brightness solved, thus improving the accuracy of scratch recognition, while the focus convolutional neural network can achieve robust, accurate and real-time recognition of scratches, which greatly reduces false negative rate and false positive rate of scratches.
In order to reduce the complexity of signal reconstruction algorithm, and reconstruct the signal with unknown sparsity, a new algorithm named One Projection Subspace Pursuit (OPSP) was proposed. Firstly, the upper and lower bounds of the signal's sparsity were determined based on the restricted isometry property, and the signal's sparsity was set as their integer middle value. Secondly, under the frame of Subspace Pursuit (SP), the projection of the observation onto the support set in each iteration process was removed to decrease the computational complexity of the algorithm. Furthermore, the whole signal's reconstruction rate was used as the index of reconstruction performance. The simulation results show that the proposed algorithm can reconstruct the signals of unknown sparsity with less time and higher reconstruction rate compared with the traditional SP algorithm, and it is effective for signal reconstruction.
Due to the lack of performance analysis while designing a distributed Evolutionary Algorithm (dEA), the designed algorithm cannot reach the expected speedup. To solve this problem, a comprehensive performance analysis method was proposed. According to the components of dEAs, factors that influence the performance of dEAs can be divided into three parts, namely, evolutionary cost, fitness evaluation cost and communication cost. Firstly, the feature of evolutionary cost under different individual encoding lengths was studied. Then when the evolutionary cost was kept unchanged, the fitness evaluation cost was controlled by using the delay function of the operating system and the communication cost was controlled by changing the length of individual encoding. Finally, the effect of each factor was tested through control variable method. The experimental results reveal the constraint relation among the three factors and point out the necessary conditions for speeding up dEAs.
Unsupervised point cloud anomaly detection based on multi-representation fusion