Feature selection can improve the performance of data classification effectively. In order to further improve the solving ability of Ant Colony Optimization (ACO) on feature selection, a hybrid Ant colony optimization with Brain storm Optimization (ABO) algorithm was proposed. In the algorithm, the information communication archive was used to maintain the historical better solutions, and a longest time first method based on relaxation factor was adopted to update archive dynamically. When the global optimal solution of ACO was not updated for several times, a route-idea transformation operator based on Fuch chaotic map was used to transform the route solutions in the archive to the idea solutions. With the obtained solutions as initial population, the Brain Storm Optimization (BSO) was adopted to search for better solutions in wider space. On six typical binary datasets, experiments were conducted to analyze the sensibility of parameters of the proposed algorithm, and the algorithm was compared to three typical evolutionary algorithms:Hybrid Firefly and Particle Swarm Optimization (HFPSO) algorithm, Particle Swarm Optimization and Gravitational Search Algorithm (PSOGSA) and Genetic Algorithm (GA). Experimental results show that compared with the comparison algorithms, the proposed algorithm can improve the classification accuracy by at least 2.88% to 5.35%, and the F1-measure by at least 0.02 to 0.05, which verify the effectiveness and superiority of the proposed algorithm.
For inaccurate segmentation results caused by the existence of edge bubbles in welding balls and the grayscale approximation of background due to the diversity of image interference factors in Ball Grid Array (BGA) bubble detection, a welding ball bubble segmentation method based on Fully Convolutional Network (FCN) and K-means clustering was proposed. Firstly, a FCN network was constructed based on the BGA label dataset, and trained to obtain an appropriate network model, and then the rough segmentation result of the image were obtained by predicting and processing the BGA image to be detected. Secondly, the welding ball region mapping was extracted, the bubble region identification was improved by homomorphic filtering method, and then the image was subdivided by K-means clustering segmentation to obtain the final segmentation result. Finally, the welding balls and bubble region in the original image were labeled and identified. Comparing the proposed algorithm with the traditional BGA bubble segmentation algorithm, the experimental results show that the proposed algorithm can segment the edge bubbles of complex BGA welding balls accurately, and the image segmentation results highly match the true contour with higher accuracy.
In order to solve the problem of the effect of noise on the unmixing precision and the insufficient utilization of spectral and spatial information in the actual Hyperspectral Unmixing (HU), an improved unmixing algorithm based on spectral distance clustering for group sparse nonnegative matrix factorization was proposed. Firstly, the HYperspectral Signal Identification by Minimum Error (Hysime) algorithm for the large amount of noise existing in the actual hyperspectral image was introduced, and the signal matrix and the noise matrix were estimated by calculating the eigenvalues. Then, a simple clustering algorithm based on spectral distance was proposed and used to merge and cluster the adjacent pixels generated by multiple bands, whose spectral reflectance distances are less than a certain value, to generate the spatial group structure. Finally, sparse non-negative matrix factorization was performed on the basis of the generated group structure. Experimental analysis shows that for both simulated data and actual data, the algorithm produces smaller Root-Mean-Square Error (RMSE) and Spectral Angle Distance (SAD) than traditional algorithms, and can produce better unmixing effect than other advanced algorithms.
Concerning the problem that there is a lot of data which need to be real-time processed during the production process, the local processor, based on multi-thread and co-processing architecture and two data buffer mechanisms was accomplished. As a reference, multi-functional thread in Hadoop's parallel architecture has an impressed impact on the design of the local processor, especially MapReduce principle. Based on the user-defined architecture, the local processor ensures data concurrency and correctness during receiving, computing and uploading. The system has been put into production for over one year. It can meet the enterprise requirements and has good stability, real-time, effectiveness and scalablility. The application result shows that the local processor can achieve synchronized analysis and processing of mass data.
Traditional detection techniques of function pointer attack cannot detect Return-Oriented-Programming (ROP) attack. A new approach by checking the integrity of jump address was proposed to detect a variety of function pointer attacks on binary code. First, function address was obtained with static analysis, and then target addresses of jump instructions were checked dynamically whether they fell into allowed function address space. The non-entry function call was analyzed, based on which a new method was proposed to detect ROP attack by combining static and dynamic analysis. The prototype system named fpcheck was developed using binary instrumentation tool, and evaluated with real-world attacks and normal programs. The experimental results show that fpcheck can detect various function pointer attacks including ROP, the false positive rate reduces substantially with accurate policies, and the performance overhead only increases by 10% to 20% compared with vanilla instrumentation.
Problem of intranet security is almost birth with network interconnection, especially when the demand for network interconnection is booming throughout the world. The traditional technology can not achieve both security and connectivity well. In view of this,a method was put forward based on trusted computing technology. Basic idea is to build a trusted model about the network interconnection system,and the core part of this model is credible on access to the person's identity and conduct verification:first, the IBA algorithm is reformed to design an cryptographic protocol between authentication system and accessors,and the effectiveness is analyzed in two aspects of function and accuracy; second,an evaluation tree model is established through the analysis of the entity sustainable behavior, so the security situation of access terminals can be evaluated.At last,the evaluation method is verified through an experiment.
To improve the speed of image reconstruction based on fan-beam Filtered Back Projection (FBP), a new optimized fast reconstruction method was proposed for polar back-projection algorithm. According to the symmetry feature of trigonometric function, the preprocessing projection datum were back-projected on the polar coordinates at the same time. During the back-projection data coordinate transformation, the computation of bilinear interpolation could be reduced by using the symmetry of the pixel position parameters. The experimental result shows that, compared with the traditional convolution back-projection algorithm, the speed of reconstruction can be improved more than eight times by the proposed method without sacrificing image quality. The new method is also applicable to 3D cone-beam reconstruction, and can be extended to multilayer spiral three-dimensional reconstruction.
In Positron Emission Tomography (PET) computed imaging, traditional iterative algorithms have the problem of details loss and fuzzy object edges. A high quality Median Prior (MP) reconstruction algorithm based on correlation coefficient and Forward-And-Backward (FAB) diffusion was proposed to solve the problem in this paper. Firstly, a characteristic factor called correlation coefficient was introduced to represent the image local gray information. Then through combining the correlation coefficient and forward-and-backward diffusion model, a new model was made up. Secondly, considering that the forward-and-backward diffusion model has the advantages of dealing with background and edge separately, the proposed model was applied to Maximum A Posterior (MAP) reconstruction algorithm of the median prior distribution, thus a median prior reconstruction algorithm based on forward-and-backward diffusion was obtained. The simulation results show that, the new algorithm can remove the image noise while preserving object edges well. The Signal-to-Noise Ratio (SNR) and Root Mean Squared Error (RMSE) also show visually the improvement of the reconstructed image quality.