《计算机应用》唯一官方网站

• •    下一篇

运动想象脑电图的空域特征迁移核学习方法

杨思琪1,罗天健1,严宣辉2,杨光局1   

  1. 1. 福建师范大学计算机与网络空间安全学院
    2. 福建师范大学数学与计算机科学学院
  • 收稿日期:2023-11-20 修回日期:2024-03-19 接受日期:2024-03-21 发布日期:2024-03-22 出版日期:2024-03-22
  • 通讯作者: 罗天健
  • 基金资助:
    国家自然科学基金资助项目(62106049);福建省自然科学基金资助项目(2022J01655)

Transfer Kernel Learning Method based on Spatial Features for Motor Imagery EEG Signals

  • Received:2023-11-20 Revised:2024-03-19 Accepted:2024-03-21 Online:2024-03-22 Published:2024-03-22
  • Supported by:
    This work is partially supported by National Natural Science Foundation of China (62106049), Natural Science Foundation of Fujian Province (2022J01655).

摘要: 运动想象脑电信号(Motor Imagery ElectroencephaloGraph, MI-EEG)在构建临床辅助康复的无创脑机接口中获得了广泛关注。受限于不同被试者的MI-EEG样本分布存在差异,跨被试MI-EEG的特征学习成为了研究重点。然而,现有方法存在域不变特征表达能力弱,且时间复杂度较高等问题,无法直接应用于在线脑机接口。为解决该问题,本文基于黎曼切空间特征(Riemannian Tangent Space)的迁移核(Transfer Kernel)学习方法(TKRTS),构建了高效的跨被试MI-EEG分类算法。TKRTS方法首先将MI-EEG协方差矩阵投影至黎曼空间,并由质心对齐不同被试者的协方差矩阵,同时提取切空间特征。随后,切空间特征集上学习域不变核矩阵,获得完备的跨被试MI-EEG特征表达,并通过该矩阵训练核支持向量机进行分类。为验证TKRTS方法的可行性与有效性,在三个公开数据集上分别进行了多源域-单目标域以及单源域-单目标域的实验,平均分类准确率分别提升了1.32个百分点和0.13个百分点。实验结果表明,与主流方法对比,TKRTS方法提升了平均分类准确率并具有相似的时间复杂度。此外,消融实验也证明了TKRTS方法对跨被试特征表达的完备性,以及参数不敏感,适合构建在线脑接机口。

关键词: 关键词: 运动想象, 脑电信号, 跨被试, 黎曼切空间特征, 迁移核学习

Abstract: Motor Imagery ElectroEncephaloGraph (MI-EEG) has gained widespread attention in the development of non-invasive brain-computer interfaces for clinical-assisted rehabilitation. Limited by the differences in the distribution of MI-EEG samples from different subjects, cross-subject MI-EEG feature learning has become the focus of research. However, existing methods have problems such as weak domain-invariant feature expression capabilities and high time complexity, and cannot be directly applied to online brain-computer interfaces. To address this issue, this paper presents an efficient cross-subject MI-EEG classification algorithm based on Riemannian Tangent Space (RTS) features and Transfer Kernel Learning (TKL) method. Our TKRTS method first projects MI-EEG covariance matrices into the Riemannian space and aligns the covariance matrices of different subjects by centering them at their centroids while extracting tangent space features. Subsequently, it learns a domain-invariant kernel matrix on the tangent space feature set, achieving a comprehensive representation of cross-subject MI-EEG features. This matrix is then used to train a kernel support vector machine for classification. To validate the feasibility and effectiveness of our TKRTS method, experiments were conducted on three publicly available datasets, including multi-source domain to single-target domain and single-source domain to single-target domain scenarios, and the average classification accuracy increased by 1.32 percentage points and 0.13 percentage points respectively. Experimental results demonstrate that, compared to state-of-the-art methods, TKRTS improves the average classification accuracy while maintaining similar time complexity. Furthermore, ablation experiments confirm the completeness of TKRTS in cross-subject feature expression and its parameter insensitivity, making it suitable for constructing online brain-computer interfaces.

Key words: Keywords: motor imagery, EEG Signals, cross-subject, Riemannian tangent space features, transfer kernel learning

中图分类号: