《计算机应用》唯一官方网站

• •    下一篇

基于坐标几何采样的点云配准方法

梁杰涛1,罗兵1,付兰慧2,常青玲1,李楠楠3,易宁波1,冯其1,何鑫1,邓辅秦1   

  1. 1. 五邑大学
    2. 五邑大学智能制造学部
    3. 澳门科技大学
  • 收稿日期:2024-01-17 修回日期:2024-04-12 发布日期:2024-05-09 出版日期:2024-05-09
  • 通讯作者: 梁杰涛

Point cloud registration method based on coordinate geometric sampling

  • Received:2024-01-17 Revised:2024-04-12 Online:2024-05-09 Published:2024-05-09

摘要: 为了提高点云配准的精度、鲁棒性和泛化性,以及解决最近点配准(ICP)算法容易陷入局部最优解的问题,提出一种基于坐标几何采样的点云配准方法(GSDCP)。首先,基于每个点周围点的坐标估计中心点曲率,通过曲率大小筛选出能够保留点云几何特征的点,完成点云下采样,然后,使用动态图卷积神经网络(DGCNN)配合下采样点云学习融入了局部几何信息的点云特征,通过Transformer捕获两个特征嵌入之间的上下文信息和软指针近似组合匹配,最后,利用一个可微的奇异值分解(SVD)层估计最终的刚性变换。在数据集ModelNet40进行点云配准实验,GSDCP与ICP、Go-ICP(Globally Optimal ICP)、PointNetLK、FGR(Fast Global Registration)、ADGCNNLK(Attention Dynamic Graph Convolutional Neural Network Lucas-Kanade)、DCP(Deep Closest Point)和MFGNet(Multi-Features Guidance Network)相比,实验结果表明,在无噪声、有噪声和看不见点云类别的情况下配准精度和鲁棒性最好,在无噪声的情况下,与MFGNet相比,GSDCP的旋转均方误差降低了31.3%,平移均方误差降低了58.3%;在有噪声的情况下,与MFGNet相比,GSDCP的旋转均方误差降低了33.9%,平移均方误差降低了73.4%;在看不见点云类别的情况下,与MFGNet相比,GSDCP的旋转均方误差降低了57.7%,平移均方误差降低了77.9%。除此之外,对不完整点云数据(设置随机遮挡、点云残缺)实验,在点云完整度75%以下时,与MFGNet相比,GSDCP的旋转均方误差降低了35.1%,平移均方误差降低了39.8%。

Abstract: To improve accuracy, robustness, and generalization of point cloud registration and address the problem of the Iterative Closest Point (ICP) algorithm easily falling into local optimal solutions, a point cloud registration method (GSDCP) based on coordinate geometric sampling was proposed. Firstly, central point curvature was estimated using coordinates of surrounding points, and points that preserve geometric features of point clouds were selected based on their curvature size. After downsampling the point cloud, a Dynamic Graph Convolutional Network (DGCNN) was employed in conjunction with the downsampled point cloud to learn integrated point cloud features that incorporate local geometry information. Contextual information is captured using a Transformer, and soft Pointers facilitate approximate combination and matching between two feature embedders. A differentiable Single Value Decomposition (SVD) layer is utilized to estimate the final rigid transformation. Point cloud registration experiments were conducted on the ModelNet40 dataset. Comparisons were made with ICP, Globally Optimal ICP (Go-ICP), PointNetLK, Fast Global Registration (FGR), Attention Dynamic Graph Convolutional Neural Network Lucas-Kanade (ADGCNNLK), Deep Closest Point (DCP), and Multi-Features Guidance Network (MFGNet), revealing that GSDCP achieves superior registration accuracy and robustness in scenarios involving noise, as well as when the point cloud category is invisible. In noise-free scenarios, GSDCP reduces rotational mean square error by 31.3% and translational mean square error by 58.3% compared to MFGNet. In noisy scenarios, GSDCP reduces rotational mean square error by 33.9% and translational mean square error by 73.4% compared to MFGNet. When the point cloud category is invisible, GSDCP reduces rotational mean square error by 57.7% and translational mean square error by 77.9% compared to MFGNet. Additionally, when dealing with incomplete point cloud data (including random occlusion and point cloud fragmentation), GSDCP exhibits a reduction of 35.1% in rotational mean square error and 39.8% in translational mean square error compared to MFGNet when point cloud integrity is below 75%.

中图分类号: