计算机应用 ›› 2009, Vol. 29 ›› Issue (06): 1582-1589.

• 数据挖掘 • 上一篇    下一篇

面向多类别模式分类问题的新型阴性选择算法

刘殊   

  1. 广东体育职业技术学院
  • 收稿日期:2008-12-12 修回日期:2009-02-19 发布日期:2009-06-10 出版日期:2009-06-01
  • 通讯作者: 刘殊
  • 基金资助:

Novel negative selection algorithm for multi-class pattern classification problems

  • Received:2008-12-12 Revised:2009-02-19 Online:2009-06-10 Published:2009-06-01

摘要: 针对阴性选择算法缺乏高效的分类器生成机制和“过拟合”抑制机制的缺陷,提出了一种面向多类别模式分类的阴性选择算法CS-NSA。通过引入克隆选择机制,根据分类器的分类效果和刺激度对其进行自适应学习;针对多类别模式分类的“过拟合”问题,引入了检测器集合的修剪机制,增强了检测器的分类推广能力。对比实验结果证明:与著名的人工免疫分类器AIRS相比,CS-NSA体现出更高的正确识别率。

关键词: 阴性选择算法, 模式分类, 克隆选择, negative-selection algorithm, pattern classification, clonal selection

Abstract: A negative selection algorithm for multi-class pattern classification problems named CS-NSA was proposed. The algorithm used clonal selection mechanism to implement self-adaptive learning of detectors and adopted detector trimming mechanism to tackle the over-fitting problem in multi-class classification. This mechanism enhanced the generalization capability of the detectors. The results of comparative experiments show that the proposed algorithm exhibits higher classifying accuracy than that of AIRS, a famous artificial immune classifier.