Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((何祥宇[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于ET-PHD滤波器和变分贝叶斯近似的扩展目标跟踪算法
何祥宇, 李静, 杨数强, 夏玉杰
计算机应用 2020, 40 (
12
): 3701-3706. DOI:
10.11772/j.issn.1001-9081.2020040451
摘要
(
447
)
PDF
(1020KB)(
439
)
可视化
收藏
针对未知测量噪声协方差情况下的多扩展目标跟踪问题,利用扩展目标概率假设密度(ET-PHD)滤波器和变分贝叶斯(VB)近似理论,提出了一种标准ET-PHD滤波器的扩展方法及其解析的实现方法。首先,根据标准ET-PHD滤波器的目标状态方程和测量方程,定义了目标状态和测量噪声协方差的增广状态变量及二者的联合转移函数;然后,根据标准ET-PHD滤波器,构建了扩展的ET-PHD滤波器的预测和更新公式;最后,在线性高斯假设的条件下,利用高斯和逆伽马(IG)混合分布表示目标的联合后验强度函数,从而给出了扩展ET-PHD滤波器的解析实现。仿真结果表明:所提算法能提供可靠的跟踪结果,可有效地处理未知测量噪声协方差环境中的多扩展目标跟踪问题。
参考文献
|
相关文章
|
多维度评价
Select
2.
粒子概率假设密度平滑器异常平滑问题的解决方法
何祥宇, 于斌, 夏玉杰
计算机应用 2020, 40 (
1
): 299-303. DOI:
10.11772/j.issn.1001-9081.2019061128
摘要
(
399
)
PDF
(744KB)(
273
)
可视化
收藏
针对粒子概率假设密度(PHD)平滑器中由漏检或目标消失现象引起的异常后向平滑估计问题,提出一种基于目标存活概率修正的改进方法。首先,修正前向滤波的预测与更新计算公式以获取滤波的目标强度函数和估计滤波过程的存活目标个数。在此基础上根据存活目标个数的前向滤波估计值的变化情况,判断跟踪过程中是否存在目标消失或漏检现象,确定后向平滑计算用到的目标存活概率值,然后采用此确定的存活概率值来改进后向平滑迭代计算公式,据此计算PHD分布中的粒子权值。仿真结果表明,所提方法能有效地解决PHD平滑器的异常平滑问题,其时间平均的最优子模式分配(OSPA)距离误差相对于标准算法由7.75 m减小至1.05 m,目标跟踪性能有了明显提升。
参考文献
|
相关文章
|
多维度评价