[1] VO B T, VO B N, HOSEINNEZHAD R, et al. Robust multi-Bernoulli filtering[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3):399-409. [2] BAR-SHALOM Y, TSE E. Tracking in a cluttered environment with probabilistic data association[J]. Automatica, 1975, 11(5):451-460. [3] FORTMANN T, BAR-SHALOM Y, SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3):173-184. [4] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1):5-18. [5] REID D. An algorithm for tracking multiple targets[J]. IEEE Transactions on Automatic Control, 1979, 24(6):843-854. [6] MAHLER R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1152-1178. [7] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4):1523-1543. [8] 李天成,范红旗,孙树栋. 粒子滤波理论、方法及其在多目标跟踪中的应用[J]. 自动化学报, 2015, 41(12):1981-2002. (LI T C, FAN H Q, SUN S D. Particle filtering:theory, approach, and application for multitarget tracking[J]. Acta Automatica Sinica, 2015, 41(12):1981-2002.) [9] 王法胜,鲁明羽,赵清杰,等. 粒子滤波算法[J]. 计算机学报, 2014, 37(8):1679-1694. (WANG F S, LU M Y, ZHAO Q J, et al. Particle filtering algorithm[J]. Chinese Journal of Computers, 2014, 37(8):1679-1694.) [10] 周瑞,鲁翔,卢帅,等. 基于粒子滤波和地图匹配的融合室内定位[J]. 电子科技大学学报, 2018, 47(3):415-420. (ZHOU R, LU X, LU S, et al. Fused indoor localization based on particle filtering and map matching[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3):415-420.) [11] 夏楠,王珏,李博. 基于粒子滤波和交互多模型的移动定位方法[J]. 电子学报, 2019, 47(1):197-203. (XIA N, WANG J, LI B. A mobile localization method based on particle filter and interacting multiple models[J]. Acta Electronica Sinica, 2019, 47(1):197-203.) [12] 罗元,庞冬雪,张毅,等. 基于自适应多提议分布粒子滤波的蒙特卡洛定位算法[J]. 计算机应用, 2016, 36(8):2352-2356. (LUO Y, PANG D X, ZHANG Y, et al. Monte Carlo localization algorithm based on particle filter with adaptive multi-proposal distribution[J]. Journal of Computer Applications, 2016, 36(8):2352-2356.) [13] ZHANG Y, JI H, HU Q. A box-particle implementation of standard PHD filter for extended target tracking[J]. Information Fusion, 2017, 34:55-69. [14] GAO Y, JIANG D, LIU M. Particle-gating SMC-PHD filter[J]. Signal Processing, 2017, 130:64-73. [15] ZHANG Y, JI H, HU Q. A fast ellipse extended target PHD filter using box-particle implementation[J]. Mechanical Systems and Signal Processing, 2018, 99:57-72. [16] VO B N, SINGH S, DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1224-1245. [17] VO B N, MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4091-4104. [18] 何祥宇. 基于随机有限集的滤波与平滑算法研究[D]. 西安:西安电子科技大学, 2018:69-80. (HE X Y. Research on filtering and smoothing algorithms based on random finite set[D]. Xi'an:Xidian University, 2018:69-80.) [19] NADARAJAH N, KIRUBARAJAN T, LANG T, et al. Multitarget tracking using probability hypothesis density smoothing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4):2344-2360. [20] MAHLER R, VO B T, VO B N. Forward-backward probability hypothesis density smoothing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):707-728. [21] VO B N, VO B T, MAHLER R. Closed-form solutions to forward-backward smoothing[J]. IEEE Transactions on Signal Processing, 2012, 60(1):2-17. [22] LIU Z. A sequential GM-based PHD filter for a linear Gaussian system[J]. Science China Information Sciences, 2013, 56(10):1-10. [23] SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457. |