针对传统协作众包任务分配中忽视工人协作关联的问题,将工人之间的社交及历史合作关系纳入考虑范畴,提出一种融合社区检测的协作众包任务分配方法。首先,利用社区检测算法挖掘众包工人之间潜在的社交关系,形成候选社群;其次,定义协作度、交互成本和众包任务分配效用等要素后,构建综合考虑技能覆盖率、信誉度及预算成本的协作众包任务分配模型;再次,引入Piece-Wise混沌映射、柯西分布逆累积函数算子、自适应正切飞行算子和麻雀警戒机制等策略,并提出改进沙猫群优化(SCSO)算法——TSCSO;最后,利用TSCSO算法对前述模型进行求解。在不同规模真实数据集合成的算例上的实验结果表明,所提算法可使任务分配成功率维持在90%及以上水平,相较于其他改进智能算法任务分配效用平均提升20.08%~53.38%,验证了所提算法在协作众包任务分配问题中的适用性、稳定性和有效性。
针对历史轨迹加噪发布干扰轨迹时数据集的冗余问题和轨迹形状相似带来的隐私泄露风险,提出轨迹数据先约简后泛化再进行差分隐私加噪的基于改进萤火虫群优化求解的干扰轨迹发布保护机制(IGSO-SDTP)。首先,基于位置显著点约简历史轨迹数据集;其次,结合k?匿名和差分隐私对简化后的轨迹数据集分别进行泛化和加噪;最后,设计了兼顾距离误差和轨迹相似性的加权距离,并以加权距离为评价指标,基于改进萤火虫群优化(IGSO)算法求解加权距离小的干扰轨迹。在多个数据集上的实验结果表明,与RD(Differential privacy for Raw trajectory data)、SDTP(Trajectory Protection of Simplification and Differential privacy)、LIC(Linear Index Clustering algorithm)、DPKTS(Differential Privacy based on K-means Trajectory shape Similarity)相比,IGSO-SDTP方法得到的加权距离分别降低了21.94%、9.15%、14.25%、10.55%,说明所提方法发布的干扰轨迹可用性和稳定性更好。
针对生活中专车类空间众包用户存在偏好和延时等待的实际情况,提出一种基于用户满意效用的空间众包任务分配方法IGSO-SSCTA。首先,定义了由用户偏好效用、延时等待效用和任务完成期望组成的用户满意效用;其次,构建了基于用户满意效用的空间众包任务分配(SSCTA)模型;接着,通过离散编码、反向学习协同初始化、四种改进移动策略、自适应选择和不可行解处理,提出一种适用该模型的改进离散萤火虫群优化(IGSO)算法;最后,利用IGSO算法对前述模型进行求解。不同规模数据集上的实验结果表明,所提方法和考虑时间最小化分配、考虑路程最小化分配、随机分配三种策略相比,用户满意效用分别提高了提升了9.64%、11.77%、15.70%;所提算法与贪婪算法和其他改进萤火虫算法相比,也有更好的稳定性和收敛性。
为了克服基础蚁群算法存在的前期搜索速度较慢、后期极易陷入局部最优解的缺点,提出初始信息素分布策略和局部优化策略;同时还提出了依赖解的质量的信息素更新依据,以增强算法过程中信息素的有效积累。将该改进蚁群算法应用于基于服务质量(QoS)的Web服务组合优化问题中,通过在数据集QWS2.0上的实验对改进蚁群算法的可用性和有效性进行了验证。结果表明改进的蚁群算法与基础蚁群算法、利用解与理想解距离更新信息素的改进蚁群算法以及用支配程度作为解的个体评价的改进遗传算法相比,能够找到更多的非劣解,寻优能力更优,表现出了较稳定的性能。