《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (2): 496-503.DOI: 10.11772/j.issn.1001-9081.2023030259
所属专题: 网络空间安全
        
                    
            彭鹏1,2,3, 倪志伟1,3( ), 朱旭辉1,3, 陈千1,3
), 朱旭辉1,3, 陈千1,3
                  
        
        
        
        
    
收稿日期:2023-03-14
									
				
											修回日期:2023-06-03
									
				
											接受日期:2023-06-27
									
				
											发布日期:2023-09-01
									
				
											出版日期:2024-02-10
									
				
			通讯作者:
					倪志伟
							作者简介:彭鹏(1988—),男,安徽巢湖人,讲师,博士研究生,CCF会员,主要研究方向:智能优化、空间众包基金资助:
        
                                                                                                                            Peng PENG1,2,3, Zhiwei NI1,3( ), Xuhui ZHU1,3, Qian CHEN1,3
), Xuhui ZHU1,3, Qian CHEN1,3
			  
			
			
			
                
        
    
Received:2023-03-14
									
				
											Revised:2023-06-03
									
				
											Accepted:2023-06-27
									
				
											Online:2023-09-01
									
				
											Published:2024-02-10
									
			Contact:
					Zhiwei NI   
							About author:PENG Peng, born in 1988, Ph. D. candidate, lecturer. His research interests include intelligent optimization, spatial crowdsourcing.Supported by:摘要:
针对历史轨迹加噪发布干扰轨迹时数据集的冗余问题和轨迹形状相似带来的隐私泄露风险,提出轨迹数据先约简后泛化再进行差分隐私加噪的基于改进萤火虫群优化求解的干扰轨迹发布保护机制(IGSO-SDTP)。首先,基于位置显著点约简历史轨迹数据集;其次,结合k?匿名和差分隐私对简化后的轨迹数据集分别进行泛化和加噪;最后,设计了兼顾距离误差和轨迹相似性的加权距离,并以加权距离为评价指标,基于改进萤火虫群优化(IGSO)算法求解加权距离小的干扰轨迹。在多个数据集上的实验结果表明,与RD(Differential privacy for Raw trajectory data)、SDTP(Trajectory Protection of Simplification and Differential privacy)、LIC(Linear Index Clustering algorithm)、DPKTS(Differential Privacy based on K-means Trajectory shape Similarity)相比,IGSO-SDTP方法得到的加权距离分别降低了21.94%、9.15%、14.25%、10.55%,说明所提方法发布的干扰轨迹可用性和稳定性更好。
中图分类号:
彭鹏, 倪志伟, 朱旭辉, 陈千. 改进萤火虫群算法协同差分隐私的干扰轨迹发布[J]. 计算机应用, 2024, 44(2): 496-503.
Peng PENG, Zhiwei NI, Xuhui ZHU, Qian CHEN. Interference trajectory publication based on improved glowworm swarm algorithm and differential privacy[J]. Journal of Computer Applications, 2024, 44(2): 496-503.
| 符号 | 含义 | 
|---|---|
| T | 原始轨迹的位置点的数据集 | 
| KT | k-匿名泛化后的数据集 | 
| k-匿名泛化和差分隐私加噪后的数据集 | |
| 干扰轨迹的位置点的数据集 | |
| k | 每个位置点k-匿名生成的点数 | 
| ε | 差分隐私预算 | 
表1 轨迹加噪的主要符号及含义
Tab. 1 Main symbols and meanings for adding noise to trajectory
| 符号 | 含义 | 
|---|---|
| T | 原始轨迹的位置点的数据集 | 
| KT | k-匿名泛化后的数据集 | 
| k-匿名泛化和差分隐私加噪后的数据集 | |
| 干扰轨迹的位置点的数据集 | |
| k | 每个位置点k-匿名生成的点数 | 
| ε | 差分隐私预算 | 
| 轨迹 | 编号 | 点数 | 阈值 | 显著点数 | 约简率/% | 
|---|---|---|---|---|---|
| Geo1 | 2008-3052 | 1 847 | 0.10 | 661 | 35.79 | 
| Geo2 | 2008-3300 | 3 683 | 0.10 | 1 008 | 27.37 | 
| Geo3 | 2009-4933 | 5 705 | 0.05 | 653 | 11.45 | 
| Geo4 | 2008-2204 | 7 584 | 0.10 | 1 538 | 20.28 | 
| Geo5 | 2008-5305 | 962 | 0.10 | 226 | 23.49 | 
| Geo6 | 2008-3959 | 1 499 | 0.10 | 424 | 28.29 | 
表2 轨迹数据的约简
Tab. 2 Reduction of track data
| 轨迹 | 编号 | 点数 | 阈值 | 显著点数 | 约简率/% | 
|---|---|---|---|---|---|
| Geo1 | 2008-3052 | 1 847 | 0.10 | 661 | 35.79 | 
| Geo2 | 2008-3300 | 3 683 | 0.10 | 1 008 | 27.37 | 
| Geo3 | 2009-4933 | 5 705 | 0.05 | 653 | 11.45 | 
| Geo4 | 2008-2204 | 7 584 | 0.10 | 1 538 | 20.28 | 
| Geo5 | 2008-5305 | 962 | 0.10 | 226 | 23.49 | 
| Geo6 | 2008-3959 | 1 499 | 0.10 | 424 | 28.29 | 
| 轨迹 | RD | SDTP | IGSO-SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| Geo1 | 23.94 | 21.48 | 19.53 | 21.12 | 24.31 | 
| Geo2 | 21.87 | 20.39 | 20.31 | 20.45 | 21.14 | 
| Geo3 | 21.76 | 20.76 | 20.53 | 20.89 | 21.46 | 
| Geo4 | 21.10 | 20.93 | 20.52 | 20.87 | 22.18 | 
| Geo5 | 20.92 | 15.28 | 14.37 | 18.13 | 21.54 | 
| Geo6 | 21.12 | 20.57 | 19.46 | 20.78 | 21.87 | 
表3 不同方法的距离误差
Tab. 3 Distance errors of different methods
| 轨迹 | RD | SDTP | IGSO-SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| Geo1 | 23.94 | 21.48 | 19.53 | 21.12 | 24.31 | 
| Geo2 | 21.87 | 20.39 | 20.31 | 20.45 | 21.14 | 
| Geo3 | 21.76 | 20.76 | 20.53 | 20.89 | 21.46 | 
| Geo4 | 21.10 | 20.93 | 20.52 | 20.87 | 22.18 | 
| Geo5 | 20.92 | 15.28 | 14.37 | 18.13 | 21.54 | 
| Geo6 | 21.12 | 20.57 | 19.46 | 20.78 | 21.87 | 
| 轨迹 | RD | SDTP | IGSO-SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| Geo1 | 59.50 | 46.52 | 43.86 | 54.16 | 48.17 | 
| Geo2 | 59.54 | 56.17 | 49.73 | 58.31 | 51.23 | 
| Geo3 | 66.41 | 59.01 | 52.20 | 61.28 | 56.11 | 
| Geo4 | 67.63 | 60.66 | 57.41 | 60.36 | 60.29 | 
| Geo5 | 60.52 | 39.66 | 33.10 | 50.17 | 45.74 | 
| Geo6 | 61.32 | 53.01 | 43.68 | 53.72 | 47.19 | 
表4 不同方法的Frechet距离
Tab. 4 Frechet distances of different methods
| 轨迹 | RD | SDTP | IGSO-SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| Geo1 | 59.50 | 46.52 | 43.86 | 54.16 | 48.17 | 
| Geo2 | 59.54 | 56.17 | 49.73 | 58.31 | 51.23 | 
| Geo3 | 66.41 | 59.01 | 52.20 | 61.28 | 56.11 | 
| Geo4 | 67.63 | 60.66 | 57.41 | 60.36 | 60.29 | 
| Geo5 | 60.52 | 39.66 | 33.10 | 50.17 | 45.74 | 
| Geo6 | 61.32 | 53.01 | 43.68 | 53.72 | 47.19 | 
| 轨迹数据 | RD | SDTP | IGSO⁃SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| Geo1 | 41.72 | 34.00 | 31.69 | 37.64 | 36.24 | 
| Geo2 | 40.70 | 38.28 | 35.02 | 39.38 | 36.19 | 
| Geo3 | 44.09 | 39.88 | 36.36 | 41.09 | 38.79 | 
| Geo4 | 44.36 | 40.79 | 38.96 | 40.62 | 41.24 | 
| Geo5 | 40.72 | 27.47 | 23.74 | 34.15 | 33.64 | 
| Geo6 | 41.22 | 36.79 | 31.57 | 37.25 | 34.53 | 
表5 不同方法的加权距离
Tab. 5 Weighted distances of different methods
| 轨迹数据 | RD | SDTP | IGSO⁃SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| Geo1 | 41.72 | 34.00 | 31.69 | 37.64 | 36.24 | 
| Geo2 | 40.70 | 38.28 | 35.02 | 39.38 | 36.19 | 
| Geo3 | 44.09 | 39.88 | 36.36 | 41.09 | 38.79 | 
| Geo4 | 44.36 | 40.79 | 38.96 | 40.62 | 41.24 | 
| Geo5 | 40.72 | 27.47 | 23.74 | 34.15 | 33.64 | 
| Geo6 | 41.22 | 36.79 | 31.57 | 37.25 | 34.53 | 
| 隐私预算 | RD | SDTP | IGSO⁃SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| 0.02 | 125.73 | 105.95 | 98.41 | 108.29 | 102.37 | 
| 0.04 | 63.93 | 52.88 | 47.76 | 54.64 | 53.17 | 
| 0.06 | 43.64 | 33.50 | 31.68 | 38.13 | 34.28 | 
| 0.08 | 32.30 | 27.81 | 25.64 | 28.23 | 27.52 | 
| 0.10 | 24.75 | 19.35 | 17.81 | 21.52 | 20.96 | 
| 0.20 | 11.30 | 10.02 | 9.34 | 10.75 | 9.51 | 
| 0.40 | 5.90 | 5.01 | 4.64 | 5.13 | 4.89 | 
| 0.60 | 3.91 | 3.28 | 3.20 | 3.25 | 3.22 | 
| 0.80 | 2.92 | 2.32 | 2.29 | 2.48 | 2.41 | 
表6 不同隐私预算下的平均加权距离
Tab. 6 Average weighted distances under different privacy budgets
| 隐私预算 | RD | SDTP | IGSO⁃SDTP | LIC | DPKTS | 
|---|---|---|---|---|---|
| 0.02 | 125.73 | 105.95 | 98.41 | 108.29 | 102.37 | 
| 0.04 | 63.93 | 52.88 | 47.76 | 54.64 | 53.17 | 
| 0.06 | 43.64 | 33.50 | 31.68 | 38.13 | 34.28 | 
| 0.08 | 32.30 | 27.81 | 25.64 | 28.23 | 27.52 | 
| 0.10 | 24.75 | 19.35 | 17.81 | 21.52 | 20.96 | 
| 0.20 | 11.30 | 10.02 | 9.34 | 10.75 | 9.51 | 
| 0.40 | 5.90 | 5.01 | 4.64 | 5.13 | 4.89 | 
| 0.60 | 3.91 | 3.28 | 3.20 | 3.25 | 3.22 | 
| 0.80 | 2.92 | 2.32 | 2.29 | 2.48 | 2.41 | 
| r | 平均 加权距离 | r | 平均 加权距离 | r | 平均 加权距离 | 
|---|---|---|---|---|---|
| 0.002 | 37.165 | 0.008 | 35.956 | 0.040 | 36.267 | 
| 0.004 | 34.993 | 0.010 | 31.693 | 0.060 | 35.523 | 
| 0.006 | 32.457 | 0.020 | 34.828 | 0.080 | 27.624 | 
表7 半径r的取值分析
Tab. 7 Analysis of radius r
| r | 平均 加权距离 | r | 平均 加权距离 | r | 平均 加权距离 | 
|---|---|---|---|---|---|
| 0.002 | 37.165 | 0.008 | 35.956 | 0.040 | 36.267 | 
| 0.004 | 34.993 | 0.010 | 31.693 | 0.060 | 35.523 | 
| 0.006 | 32.457 | 0.020 | 34.828 | 0.080 | 27.624 | 
| 1 | JUNGLAS I A, WATSON R T. Location-based services[J]. Communications of the ACM, 2008, 51(3): 65-69. 10.1145/1325555.1325568 | 
| 2 | 童咏昕,袁野,成雨蓉,等. 时空众包数据管理技术研究综述[J]. 软件学报,2017, 28(1): 35-58. | 
| TONG Y X, YUAN Y, CHENG Y R, et al. Survey on spatiotemporal crowdsourced data management techniques[J]. Journal of Software, 2017, 28(1): 35-58. | |
| 3 | 田丰, 吴振强,鲁来凤, 等. 面向轨迹数据发布的个性化差分隐私保护机制[J]. 计算机学报, 2021,44(4):709-723. | 
| TIAN F, WU Z Q, LU L F, et al. A sample based personalized differential privacy mechanism for trajectory data publication[J]. Chinese Journal of Computers, 2021, 44(4): 709-723 | |
| 4 | ZHAO P, LI J, ZENG F, et al. ILLIA: enabling k-anonymity based privacy preserving against location injection attacks in continuous LBS queries[J]. IEEE Internet of Things Journal, 2018, 5(2): 1033-1042. 10.1109/jiot.2018.2799545 | 
| 5 | 朱素霞, 刘抒伦, 孙广路. 基于相对熵和K-means的形状相似差分隐私轨迹保护机制[J]. 通信学报, 2021, 42(2): 113-123. | 
| ZHU S X, LIU S L, SUN G L. Shape similarity differential privacy trajectory protection mechanism based on relative entropy and K-means[J]. Journal on Communications, 2021, 42(2):113-123. | |
| 6 | 巩现勇, 李靖涵, 行瑞星, 等. 一种道路路口和拐点的识别与重要性度量方法[J]. 测绘与空间地理信息, 2018, 41(2): 5-9. 10.3969/j.issn.1672-5867.2018.02.002 | 
| GONG X Y, LI J H, XING R X, et al. Road roundabout and corner recognition and importance measurement[J]. Geomatics & Spatial Information Technology, 2018, 41(2): 5-9. 10.3969/j.issn.1672-5867.2018.02.002 | |
| 7 | 彭鹏,倪志伟,朱旭辉. 基于用户满意效用的空间众包任务分配方法[J].计算机应用, 2022, 42(10): 3235-3243. 10.11772/j.issn.1001-9081.2021081528 | 
| PENG P, NI Z W, ZHU X H. Task allocation method of spatial crowdsourcing based on user satisfaction utility[J]. Journal of Computer Applications, 2022, 42(10): 3235-3243. 10.11772/j.issn.1001-9081.2021081528 | |
| 8 | HE X, CORMODE G, MACHANAVAJJHALA A, et al. DPT: differentially private trajectory synthesis using hierarchical reference systems[J]. Proceedings of the VLDB Endowment, 2015, 8(11): 1154-1165. 10.14778/2809974.2809978 | 
| 9 | HE X, RAVAL N, MACHANAVAJJHALA A. A demonstration of VisDPT: visual exploration of differentially private trajectories[J]. The VLDB Endowment, 2016, 9(13): 1489-1492. 10.14778/3007263.3007291 | 
| 10 | XIAO Y, XIONG L. Protecting locations with differential privacy under temporal correlations[C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2015: 1298-1309. 10.1145/2810103.2813640 | 
| 11 | WANG S, SINNOTT R, NEPAL S. Protecting the location privacy of mobile social media users[C]// Proceedings of the 2016 IEEE International Conference on Big Data. Piscataway: IEEE, 2016: 1143-1150. 10.1109/bigdata.2016.7840718 | 
| 12 | SWEENEY L. K-anonymity: A model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570. 10.1142/s0218488502001648 | 
| 13 | 吴云乘,陈红,赵素云,等.一种基于时空相关性的差分隐私轨迹保护机制[J].计算机学报, 2018, 41(2): 309-322. 10.11897/SP.J.1016.2018.00309 | 
| WU Y C, CHEN H, ZHAO S Y, et al. Differentially private trajectory protection based on spatial and temporal correlation[J]. Chinese Journal of Computers, 2018, 41(2): 309-322. 10.11897/SP.J.1016.2018.00309 | |
| 14 | TERROVITIS M, POULIS G, MAMOULIS N, et al. Local suppression and splitting techniques for privacy preserving publication of trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(7): 1466-1479. 10.1109/tkde.2017.2675420 | 
| 15 | YAO L, WANG X, WANG X, et al. Publishing sensitive trajectory data under enhanced l-diversity model[C]// Proceedings of the 2019 20th IEEE International Conference on Mobile Data Management. Piscataway: IEEE, 2019: 160-169. 10.1109/mdm.2019.00-61 | 
| 16 | 陈思, 付安民, 苏铓, 等. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报,2021,42(9):54-64. 10.11959/j.issn.1000-436x.2021168 | 
| CHEN S, FU A M, SU M, et al. Trajectory privacy protection scheme based on differential privacy[J]. Journal on Communications, 2021, 42(9): 54-64. 10.11959/j.issn.1000-436x.2021168 | |
| 17 | 朱素霞, 王蕾, 孙广路. 满足本地差分隐私的分类变换扰动机制[J]. 计算机研究与发展, 2022, 59(2): 430-439. 10.7544/issn1000-1239.20200717 | 
| ZHU S X, WANG L, SUN G L. A perturbation mechanism for classified transformation satisfying local differential privacy[J]. Journal of Computer Research and Development, 2022, 59(2): 430-439. 10.7544/issn1000-1239.20200717 | |
| 18 | DWORK C, McSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]// Proceedings of the 3rd Conference on Theory of Cryptography. Berlin: Springer, 2006: 265-284. 10.1007/11681878_14 | 
| 19 | 袁健, 王迪, 高喜龙, 等. 基于差分隐私的匿名组LBS轨迹隐私保护模型[J].小型微型计算机系统, 2019, 40(2):341-347. 10.3969/j.issn.1000-1220.2019.02.018 | 
| YUAN J, WAND D, GAO X L, et al. Privacy protection model for anonymous group LBS trajectorybased on differential privacy[J]. Journal of Chinese Computer Systems, 2019, 40(2):341-347. 10.3969/j.issn.1000-1220.2019.02.018 | |
| 20 | 刘振鹏,苗德威,刘倩楠,等. k-匿名下通过本地差分隐私实现位置隐私保护[J].计算机应用研究, 2022, 39(8): 2469-2473. | 
| LIU Z P, MIAO D W, LIU Q N, et al. Location privacy protection through local differential privacy under k-anonymity[J].Application Research of Computers, 2022, 39(8): 2469-2473. | |
| 21 | KRISHNANAND K N, GHOSE D. Glowworm swarm based optimization algorithm for multi modal functions with collective robotics applications[J]. Multiagent and Grid Systems, 2006, 2(3): 209-222. 10.3233/mgs-2006-2301 | 
| 22 | REDDY D L, PUTTAMADAPPA C, SURESH H N. Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in Wireless Sensor Network[J]. Pervasive and Mobile Computing, 2021, 71: 101338. 10.1016/j.pmcj.2021.101338 | 
| 23 | BALASUBRAMANIAN K, ANANTHAMOORTHY N P.Improved adaptive neuro-fuzzy inference system based on modified glowworm swarm and differential evolution optimization algorithm for medical diagnosis[J]. Neural Computing and Applications, 2021, 33: 7649-7660. 10.1007/s00521-020-05507-0 | 
| 24 | FU K, GUO Z, YE J. Fire detection method based on improved glowworm swarm optimization-based TWSVM [C]// Proceedings of the 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. Cham: Springer, 2021: 862-867. 10.1007/978-3-030-62743-0_124 | 
| 25 | ALT H, GODAU M. Computing the Fréchet distance between two polygonal curves[J]. International Journal of Computational Geometry & Applications, 1995, 5(1/2): 75-91. | 
| 26 | McSHERRY F, TALWAR K. Mechanism design via differential privacy[C]// Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science. Piscataway: IEEE, 2007: 94-103. 10.1109/focs.2007.66 | 
| 27 | McSHERRY F. Privacy integrated queries: an extensible platform for privacy-preserving data analysis[C]// Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2009: 19-30. 10.1145/1559845.1559850 | 
| 28 | DWORK C. A firm foundation for private data analysis[J]. Communications of the ACM, 2011, 54(1): 86-95. 10.1145/1866739.1866758 | 
| 29 | 倪志伟,肖宏旺,伍章俊,等.基于改进离散型萤火虫群优化算法和分形维数的属性选择方法[J].模式识别与人工智能, 2013, 26(12): 1169-1178. 10.3969/j.issn.1003-6059.2013.12.011 | 
| NI Z W, XIAO H W, WU Z J,et al. Attribute selection method based on improved discrete glowworm swarm optimization and fractal dimension[J]. Pattern Recognition and Arificial Intelligence, 2013,26(12): 1169-1178. 10.3969/j.issn.1003-6059.2013.12.011 | |
| 30 | KOENKER R, MACHADO J A F. Goodness of fit and related inference processes for quantile regression[J]. Journal of the American Statistical Association,1999,94(448):1296-1310. 10.1080/01621459.1999.10473882 | 
| 31 | ZHENG Y, XIE X, MA W-Y. GeoLife: A collaborative social networking service among user, location and trajectory[J]. IEEE Data Engineering Bulletin, 2010, 33: 32-39. 10.1109/mdm.2009.50 | 
| [1] | 张治政, 张啸剑, 王俊清, 冯光辉. 结合差分隐私与安全聚集的联邦空间数据发布方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2777-2784. | 
| [2] | 陈廷伟, 张嘉诚, 王俊陆. 面向联邦学习的随机验证区块链构建[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2770-2776. | 
| [3] | 高瑞, 陈学斌, 张祖篡. 面向部分图更新的动态社交网络隐私发布方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3831-3838. | 
| [4] | 陈学斌, 单丽洋, 郭如敏. 基于差分隐私的直方图发布方法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3114-3121. | 
| [5] | 徐雪冉, 杨庚, 黄喻先. 横向联邦学习中差分隐私聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 217-222. | 
| [6] | 黄硕, 李艳辉, 曹建秋. 本地化差分隐私下的频繁序列模式挖掘算法PrivSPM[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2057-2064. | 
| [7] | 陈少权, 蔡剑平, 孙岚. 动态梯度阈值裁剪的差分隐私生成对抗网络算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2065-2072. | 
| [8] | 尹春勇, 屈锐. 基于个性化差分隐私的联邦学习算法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1160-1168. | 
| [9] | 王腾, 霍峥, 黄亚鑫, 范艺琳. 联邦学习中的隐私保护技术研究综述[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 437-449. | 
| [10] | 张宇, 蔡英, 崔剑阳, 张猛, 范艳芳. 卷积神经网络中基于差分隐私的动量梯度下降算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3647-3653. | 
| [11] | 田蕾, 葛丽娜. 基于差分隐私的广告推荐算法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3346-3350. | 
| [12] | 王利娥, 李小聪, 刘红翼. 融合知识图谱和差分隐私的新闻推荐方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1339-1346. | 
| [13] | 张国鹏, 陈学斌, 王豪石, 翟冉, 马征. 面向本地差分隐私的K-Prototypes聚类方法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3813-3821. | 
| [14] | 赵乐, 张恩, 秦磊勇, 李功丽. 基于区块链的多方隐私保护k-means聚类方案[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3801-3812. | 
| [15] | 陈恒恒, 倪志伟, 朱旭辉, 金媛媛, 陈千. 基于聚类分析的差分隐私高维数据发布方法[J]. 计算机应用, 2021, 41(9): 2578-2585. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||