针对现有的基于预训练语言模型的答案获取方法存在预测边界不够准确的问题,提出一种面向片段抽取式机器阅读理解(MRC)的边界感知方法。首先,在问题输入阶段引入特殊字符标记问题边界,通过增强问题语义信息的方式实现对问题边界的感知;其次,在答案预测阶段,构建答案边界回归器,实现感知的问题边界语义信息与输出的预测答案边界语义信息的语义交互;最后,通过交互后的语义信息进一步调整存在偏差的预测答案边界,实现对预测答案的校准。实验结果表明,与SpanBERT (Span-based Bidirectional Encoder Representation from Transformers)相比,该方法在公共数据集SQuAD(Stanford Question Answering Dataset)1.1上的F1值提升了0.2个百分点、精确匹配(EM)值提升了0.9个百分点;在HotpotQA(Hotpot Question Answering)数据集上的F1值和EM值都提升了0.7个百分点;在NewsQA(News Question Answering)数据集上的F1值提升了2.8个百分点、EM值提升了3.3个百分点。可见,该方法能有效增强对问题边界信息的感知并且实现对预测答案边界的校准,有利于更好地理解和分析文本数据,在智能问答、智能客服等领域的应用中提高系统的准确性。
针对经典的基于稀疏编码的图像超分辨率算法在重建过程中运算量大、计算效率低的缺点,提出一种基于预测稀疏编码的单幅图像超分辨率重建算法。训练阶段,该算法在传统的稀疏编码误差函数基础上叠加编码预测误差项构造目标函数,并采用交替优化过程最小化该目标函数;测试阶段,仅需将输入的低分辨图像块和预先训练得到的低分辨率字典相乘就能预测出重建系数,从而避免了求解稀疏回归问题。实验结果表明,与经典的基于稀疏编码的单幅图像超分辨率算法相比,该算法能够在显著减少重建阶段运算时间的同时几乎完全保留超分辨率视觉效果。