1 |
YOU C, CHEN N, ZOU Y. Knowledge distillation for improved accuracy in spoken question answering [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 7793-7797.
|
2 |
奚雪峰,周国栋.面向自然语言处理的深度学习研究[J].自动化学报, 2016, 42(10): 1445-1465.
|
|
XI X F, ZHOU G D. A survey on deep learning for natural language processing [J]. Acta Automatica Sinica, 2016, 42(10): 1445-1465.
|
3 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
4 |
JOSHI M, CHEN D, LIU Y, et al. SpanBERT: improving pre-training by representing and predicting spans [J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77.
|
5 |
RAJPURKAR P, ZHANG J, LOPYREV K, et al. SQuAD: 100000+ questions for machine comprehension of text [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 2383-2392.
|
6 |
YANG Z, QI P, ZHANG S, et al. HotpotQA: a dataset for diverse, explainable multi-hop question answering [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2369-2380.
|
7 |
TRISCHLER A, WANG T, YUAN X, et al. NewsQA: a machine comprehension dataset [C]// Proceedings of the 2 nd Workshop on Representation Learning for NLP. Stroudsburg: ACL, 2017: 191-200.
|
8 |
FISCH A, TALMOR A, JIA R, et al. MRQA 2019 shared task: evaluating generalization in reading comprehension [C]// Proceedings of the 2 nd Workshop on Machine Reading for Question Answering. Stroudsburg: ACL, 2019: 1-13.
|
9 |
LIU S, ZHANG X, ZHANG S, et al. Neural machine reading comprehension: methods and trends [J]. Applied Sciences, 2019, 9(18): 3698.
|
10 |
WANG S, JIANG J. Machine comprehension using match-LSTM and answer pointer [EB/OL]. (2016-11-07) [2023-09-06]. .
|
11 |
张虎,王宇杰,谭红叶,等.基于MHSA和句法关系增强的机器阅读理解方法研究[J].自动化学报, 2022, 48(11): 2718-2728.
|
|
ZHANG H, WANG Y J, TAN H Y, et al. Research on machine reading comprehension method based on MHSA and syntactic relations enhancement [J]. Acta Automatica Sinica, 2022, 48(11): 2718-2728.
|
12 |
HU M, WEI F, PENG Y, et al. Read + verify: machine reading comprehension with unanswerable questions [C]// Proceedings of the 33 rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 6529-6537.
|
13 |
赵加坤,戴梦瑶,刘江宁,等.面向片段抽取式机器阅读理解的注意力网络[J].计算机与数字工程, 2022, 50(2): 350-355.
|
|
ZHAO J K, DAI M Y, LIU J N, et al. Attention networks for fragment extractive machine reading comprehension [J]. Computer and Digital Engineering, 2022, 50(2): 350-355.
|
14 |
LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach [EB/OL]. (2019-07-26) [2023-09-06]. .
|
15 |
RAM O, KIRSTAIN Y, BERANT J, et al. Few-shot question answering by pretraining span selection [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing s (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 3066-3079.
|
16 |
YASUNAGA M, LESKOVEC J, LIANG P. LinkBERT: pre-training language models with document links [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 8003-8016.
|
17 |
DHINGRA B, LIU H, YANG Z, et al. Gated-attention readers for text comprehension [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1832-1846.
|
18 |
ZHANG Z, YANG J, ZHAO H. Retrospective reader for machine reading comprehension [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 14506-14514.
|
19 |
ZHANG W, REN F. ELMo+gated self-attention network based on BiDAF for machine reading comprehension [C]// Proceedings of the IEEE 11th International Conference on Software Engineering and Service Science. Piscataway: IEEE, 2020: 1-6.
|