为了更好地满足中餐菜品识别对准确性和时效性的应用需求,设计一种新型的菜品识别网络。在原YOLOv5模型的基础上,结合Supermask方法与结构化通道剪枝对模型进行剪枝操作,并利用Int8量化技术最终实现对模型的轻量化处理,保证模型在菜品识别中兼顾准确率和速度,同时提高模型的可移植性。实验结果表明,所提模型在交并比(IoU)为0.5时,平均精度均值(mAP)达到99.00%,平均每帧识别时间达到59.54 ms,相较于原始YOLOv5降低了20 ms,且准确率基本保持一致。此外,利用Qt软件将新型菜品识别网络移植到瑞萨RZ/G2L开发板,构建智能出餐系统,可实现点餐、生成订单、自动出餐全流程,为未来真正的餐厅智能出餐系统的构建应用提供了理论与实践基础。
针对高维数据难以被人们直观理解,且难以被机器学习和数据挖据算法有效地处理的问题,提出一种新的非线性降维方法——判别式扩散映射分析(DDMA)。该方法将判别核方案应用到扩散映射框架中,依据样本类别标签在类内窗宽和类间窗宽中判别选取高斯核窗宽,使核函数能够有效提取数据的关联特性,准确描述数据空间的结构特征。通过在人工合成Swiss-roll测试和青霉素发酵过程中的仿真应用,与主成分分析(PCA)、线性判别分析(LDA)、核主成分分析(KPCA)、拉普拉斯特征映射(LE)算法和扩散映射(DM)进行比较,实验结果表明DDMA方法在低维空间中代表高维数据的同时成功保留了数据的原始特性,且通过该方法在低维空间中产生的数据结构特性优于其他方法,在数据降维与特征提取性能上验证了该方案的有效性。
针对类似于飞机油箱环境中连续型机器人的路径规划问题,设计基于区域行进策略的路径规划算法,结合机器人本体结构约束规划到达油箱内任意给定目标点的路径。连续型机器人具有运动灵活性,但超冗余自由度导致了三维空间规划的多解性,增加了算法的复杂度。采用降低维度的方式,通过将三维空间转化为二维平面进行规划,降低了算法的时间复杂度。将飞机油箱的单舱划分为两个区域,根据目标点所处区域位置确定规划策略。最后,基于Matlab对所提算法进行仿真,实验结果验证了算法的可行性和有效性。
针对核主元分析(KPCA)中高斯核参数β的经验选取问题,提出了核主元分析的核参数判别选择方法。依据训练样本的类标签计算类内、类间核窗宽,在以上核窗宽中经判别选择方法确定核参数。根据判别选择核参数所确定的核矩阵,能够准确描述训练空间的结构特征。用主成分分析(PCA)对特征空间进行分解,提取主成分以实现降维和特征提取。判别核窗宽方法在分类密集区域选择较小窗宽,在分类稀疏区域选择较大窗宽。将判别核主成分分析(Dis-KPCA)应用到数据模拟实例和田纳西过程(TEP),通过与KPCA、PCA方法比较,实验结果表明,Dis-KPCA方法有效地对样本数据降维且将三个类别数据100%分开,因此,所提方法的降维精度更高。