1 |
GAO M, SHI J, DONG Z, et al. A Chinese dish detector with modified YOLOv3[C]// Intelligent Equipment, Robots, and Vehicles: Proceedings of the 7th International Conference on Life System Modeling and Simulation, and 7th International Conference on Intelligent Computing for Sustainable Energy and Environment, Part III. Cham: Springer, 2021: 174-183. 10.1007/978-981-16-7213-2_17
|
2 |
KAWANO Y, YANAI K. Automatic expansion of a food image dataset leveraging existing categories with domain adaptation[C]// Proceedings of the 2014 European Conference on Computer Vision. Cham: Springer, 2015: 3-17. 10.1007/978-3-319-16199-0_1
|
3 |
苏国炀. 基于图像的中餐菜品分割与识别[D].杭州:浙江大学, 2019:36-58.
|
|
SU G Y. Segmentation and recognition of Chinese dishes based on image [D]. Hangzhou: Zhejiang University, 2019:36-58.
|
4 |
边竞,王艺璇,代宇晖,等.基于卷积神经网络的中餐菜品名称成分识别[J].智能计算机与应用,2020,10(6):55-58. 10.3969/j.issn.2095-2163.2020.06.012
|
|
BIAN J, WANG Y X, DAI Y H, et al. Recognition of ingredients and dish names based on convolutional neural network [J]. Intelligent Computer and Applications, 2020, 10(6): 55-58. 10.3969/j.issn.2095-2163.2020.06.012
|
5 |
王晓朋. 精细粒度的菜品识别方法研究[D]. 成都:电子科技大学, 2020:39-63.
|
|
WANG X P. Research on fine-grained food image recognition [D]. Chengdu: University of Electronic Science and Technology of China, 2020: 39-63.
|
6 |
吴正东. 基于深度学习的中餐菜品图像分类算法研究[D].成都:电子科技大学,2020:41-58.
|
|
WU Z D. Research on Chinese food dishes image classification algorithm based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2020: 41-58.
|
7 |
何志洋. 基于深度学习的菜品识别算法研究与系统实现[D].杭州:浙江工商大学, 2022:19-28.
|
|
HE Z Y. Research and system implementation of dish recognition algorithm based on deep learning[D]. Hangzhou: Zhejiang Gongshang University, 2022:19-28.
|
8 |
朱瑶. 基于卷积神经网络的菜品识别系统研究[D].南京:南京信息工程大学,2020:15-42.
|
|
ZHU Y. Research on dish recognition system based on convolutional neural network [D]. Nanjing: Nanjing University of Information Science and Technology, 2020:15-42.
|
9 |
朱凌云. 基于少样本学习的菜品识别算法研究[D].金华:浙江师范大学,2021:15-29.
|
|
ZHU L Y. Research on dishes recognition algorithm based on few sample learning[D]. Jinhua: Zhejiang Normal University, 2021:15-29.
|
10 |
姚华莹,彭亚雄.基于轻量型卷积神经网络的菜品图像识别[J].软件工程, 2021,24(10):23-27.
|
|
YAO H Y, PENG Y X. Dishes image recognition based on lightweight convolutional neural network[J]. Software Engineering, 2021, 24(10):23-27.
|
11 |
邓志良,李磊.基于改进残差网络的中式菜品识别模型[J].激光与光电子学进展,2021,58(6):256-264. 10.3788/lop202158.0610019
|
|
DENG Z L, LI L.Chinese food recognition model based on improved residual network[J]. Laser & Optoelectronics Progress,2021,58(6):256-264. 10.3788/lop202158.0610019
|
12 |
张锦,屈佩琪,孙程,等.基于改进YOLOv5的安全帽佩戴检测算法[J].计算机应用,2022,42(4):1292-1300.
|
|
ZHANG J, QU P Q, SUN C, et al. Safety helmet wearing detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2022, 42(4): 1292-1300.
|
13 |
尹靖涵,瞿绍军,姚泽楷,等.基于YOLOv5的雾霾天气下交通标志识别模型[J].计算机应用,2022,42(9):2876-2884. 10.11772/j.issn.1001-9081.2021071305
|
|
YIN J H, QU S J, YAO Z K, et al. Traffic sign recognition model in hazy weather based on YOLOv5[J]. Journal of Computer Applications, 2022,42(9): 2876-2884. 10.11772/j.issn.1001-9081.2021071305
|
14 |
WANG J, CHEN Y, DONG Z, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35: 7853-7865. 10.1007/s00521-022-08077-5
|
15 |
张利红,蔡敬菊.基于轻量化YOLOv5算法的目标检测系统[J].计算机技术与发展,2022,32(11):134-139. 10.3969/j.issn.1673-629X.2022.11.020
|
|
ZHANG L H, CAI J J. Target detection system based on lightweight YOLOv5 algorithm[J]. Computer Technology and Development, 2022,32(11):134-139. 10.3969/j.issn.1673-629X.2022.11.020
|
16 |
钟志峰,夏一帆,周冬平,等.基于改进YOLOv4的轻量化目标检测算法[J].计算机应用,2022,42(7):2201-2209.
|
|
ZHONG Z F, XIA Y F, ZHOU D P, et al. Lightweight target detection algorithm based on improved YOLOv4[J]. Journal of Computer Applications, 2022,42(7): 2201-2209.
|
17 |
WEN W, WU C, WANG Y, et al. Learning structured sparsity in deep neural networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook Curran Associates Inc., 2016: 2082-2090.
|
18 |
WANG W, CHEN M, ZHAO S, et al. Accelerate CNNs from three dimensions: a comprehensive pruning framework[C]// Proceedings of the 38th International Conference on Machine Learning. New York: PMLR, 2021, 139: 10717-10726.
|
19 |
LIU Z, LI J, SHEN Z, et al. Learning efficient convolutional networks through network slimming[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2755-2763. 10.1109/iccv.2017.298
|
20 |
ZHOU H, LAN J, LIU R, et al. Deconstructing lottery tickets: Zeros, signs, and the supermask[EB/OL]. [2023-03-01]. .
|
21 |
TAN J H, CHAN C S, CHUAH J H. End-to-end supermask pruning: Learning to prune image captioning models[J]. Pattern Recognition, 2022, 122: 108366. 10.1016/j.patcog.2021.108366
|
22 |
GHOLAMI A, KIM S, DONG Z, et al. A survey of quantization methods for efficient neural network inference [EB/OL]. [2023-02-14]. . 10.1201/9781003162810-13
|
23 |
BANNER R, NAHSHAN Y, HOFFER E, et al. Post training 4-bit quantization of convolutional networks for rapid-deployment[EB/OL]. [2023-03-01]. .
|
24 |
WU B, WANG Y, ZHANG P, et al. Mixed precision quantization of ConvNets via differentiable neural architecture search [EB/OL]. [2022-12-21]. .
|
25 |
LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision.Piscataway: IEEE, 2017: 2999-3007. 10.1109/iccv.2017.324
|
26 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149. 10.1109/tpami.2016.2577031
|
27 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2023-02-15]. . 10.1109/cvpr.2017.690
|
28 |
LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. [2022-12-06]. .
|