期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于联合损失胶囊网络的换衣行人重识别
刘乾, 王洪元, 曹亮, 孙博言, 肖宇, 张继
《计算机应用》唯一官方网站    2021, 41 (12): 3596-3601.   DOI: 10.11772/j.issn.1001-9081.2021061090
摘要462)   HTML16)    PDF (610KB)(269)    收藏

目前的行人重识别(Re-ID)研究主要集中在短时间情形,即一个人的衣着不太可能发生改变的情况。然而现实中更常见的是长时间的情况,这时一个人有很大的机会更换衣服,Re-ID模型应该考虑这种情况。为此,研究了一种基于联合损失胶囊网络的换衣行人重识别方法。所提方法基于换衣行人重识别胶囊网络ReIDCaps,使用与传统的标量神经元相比包含更多信息的矢量胶囊,用其长度表示行人身份信息,用其方向表示行人衣着信息;采用软嵌入注意力(SEA)防止模型过拟合;使用特征稀疏表示(FSR)机制提取具有判别性的特征;增加标签平滑正则化交叉熵损失与Circle Loss的联合损失以提高模型的泛化能力和鲁棒性。在三个换衣行人重识别数据集Celeb-reID、Celeb-reID-light和NKUP上进行实验,实验结果表明所提方法与目前已有的Re-ID方法相比具有一定优势。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 联合均等采样随机擦除和全局时间特征池化的视频行人重识别方法
陈莉, 王洪元, 张云鹏, 曹亮, 殷雨昌
计算机应用    2021, 41 (1): 164-169.   DOI: 10.11772/j.issn.1001-9081.2020060909
摘要486)      PDF (1012KB)(500)    收藏
针对为解决视频监控中遮挡、背景物干扰,以及行人外观、姿势相似性等因素导致的视频行人重识别准确率较低的问题,提出了联合均等采样随机擦除和全局时间特征池化的视频行人重识别方法。首先针对目标行人被干扰或部分遮挡的情况,采用了均等采样随机擦除(ESE)的数据增强方法来有效地缓解遮挡,提高模型的泛化能力,更准确地匹配行人;其次为了进一步提高视频行人重识别的精度,学习更有判别力的特征表示,使用三维卷积神经网络(3DCNN)提取时空特征,并在网络输出行人特征表示前加上全局时间特征池化层(GTFP),这样既能获取上下文的空间信息,又能细化帧与帧之间的时序信息。通过在MARS、DukeMTMC-VideoReID 和PRID-2011三个公共视频数据集上的大量实验,证明所提出的联合均等采样随机擦除和全局时间特征池化的方法,相较于目前一些先进的视频行人重识别方法,具有一定的竞争力。
参考文献 | 相关文章 | 多维度评价