[1] SONG C, HUANG Y, OUYANG W, et al. Mask-guided contrastive attention model for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision2016:1325-1334. [7] YAN Y, NI B, SONG Z, et al. Person re-identification via recurrent feature aggregation[C]//Proceedings of the 14th European Conference on Computer Vision,LNCS 9910. Cham:Springer, 2016:701-716. [8] LIAO X, HE L, YANG Z, et al. Video-based person reidentification via 3D convolutional networks and non-local attention[C]//Proceedings of the 14th Asian Conference on Computer Vision,LNCS 11366. Cham:Springer,2018:620-634. [9] ZHONG Z,ZHENG L,KANG G,et al. Random erasing data augmentation[EB/OL].[2020-07-04]. https://arxiv.org/pdf/1708.04896.pdf. [10] HIRZER M, BELEZNAI C, ROTH P M, et al. Person reidentification by descriptive and discriminative classification[C]//Proceedings of the 17th Scandinavian Conference on Image Analysis,LNCS 6688. Berlin:Springer,2011:91-102. [11] RISTANI E,SOLERA F,ZOU R,et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9914. Cham:Springer,2016:17-35. [12] ZHENG L,BIE Z,SUN Y,et al. MARS:a video benchmark for large-scale person re-identification[C]//Proceedings of the 14th European Conference on Computer Vision,LNCS 9910. Cham:Springer,2016:868-884. [13] KARPATHY A,TODERICI G,SHETTY S,et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the 2014 IEEE conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:1725-1732. [14] GAO J, YANG Z, NEVATIA R. RED:reinforced encoderdecoder networks for action anticipation[EB/OL].[2020-07-04]. https://arxiv.org/pdf/1707.04818.pdf. [15] SHOU Z,WANG D,CHANG S F. Temporal action localization in untrimmed videos via multi-stage CNNs[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1049-1058. [16] LI J,ZHANG S,HUANG T. Multi-scale 3D convolution network for video based person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8618-8625. [17] 郑伟诗, 吴岸聪. 非对称行人重识别:跨摄像机持续行人追踪[J]. 中国科学:信息科学,2018,48(5):545-563.(ZHENG W S,WU A C. Asymmetric person re-identification:cross-view person tracking in a large camera network[J]. SCIENTIA SINICA Informationis,2018,48(5):545-563.) [18] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision. Piscataway:IEEE,2015:4489-4497. [19] HARA K,KATAOKA H,SATOH Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6546-6555. [20] GAO J,YANG Z,SUN C,et al. TURN TAP:temporal unit regression network for temporal action proposals[C]//Proceedings of the 2017 IEEE Conference on Computer Vision. Piscataway:IEEE,2017:3648-3656. [21] LI S, BAK S, CARR P, et al. Diversity regularized spatiotemporal attention for video-Based person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:369-378. [22] SUH Y, WANG J, TANG S, et al. Part-aligned bilinear representations for person re-identification[EB/OL].[2020-07-04]. https://arxiv.org/pdf/1804.07094.pdf. [23] CARREIRA J,ZISSERMAN A. QUO vadis,action recognition? a new model and the Kinetics dataset[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4724-4733. [24] HERMANS A,BEYER L,LEIBE B. In defense of the triplet loss for person re-identification[EB/OL].[2020-07-04]. https://arxiv.org/pdf/1703.07737.pdf. [25] 戴臣超, 王洪元, 倪彤光, 等. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展,2019,56(8):1632-1641.(DAI C C,WANG H Y,NI T G,et al. Person re-identification based on deep convolutional generative adversarial network and expanded neighbor reranking[J]. Journal of Computer Research and Development,2019,56(8):1632-1641.) [26] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2020-07-04]. https://arxiv.org/pdf/1412.6980v8.pdf. [27] ZHOU Z,HUANG Y,WANG W,et al. See the forest for the trees:joint spatial and temporal recurrent neural networks for video-based person re-identification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6776-6785. [28] ZHANG J,WANG N,ZHANG L. Multi-shot pedestrian reidentification via sequential decision making[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6781-6789. [29] WU Y,LIN Y,DONG X,et al. Exploit the unknown gradually:one-shot video-based person re-identification by stepwise learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:5177-5186. [30] ZHAO Y, SHEN X, JIN Z, et al. Attribute-driven feature disentangling and temporal aggregation for video person reidentification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:4908-4917. [31] LIU Y,YUAN Z,ZHOU W,et al. Spatial and temporal mutual promotion for video-based person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8786-8793. [32] SU X,QU X,ZHOU Z,et al. k-Reciprocal harmonious attention network for video-based person re-identification[J]. IEEE Access,2019,7:22457-22470. |