Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((李磊民[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于球形矩匹配与特征判别的图像超分辨率重建
林静, 黄玉清, 李磊民
计算机应用 2020, 40 (
8
): 2345-2350. DOI:
10.11772/j.issn.1001-9081.2019122142
摘要
(
459
)
PDF
(1395KB)(
485
)
可视化
收藏
由于网络训练不稳定,基于生成对抗网络(GAN)的图像超分辨率重建存在模式崩溃的现象。针对此问题,提出了一种基于球形几何矩匹配与特征判别的球面双判别器超分辨率重建网络SDSRGAN,通过引入几何矩匹配与高频特征判别来改善网络训练的稳定性。首先,生成器对图像提取特征并通过上采样生成重建图像;接着,球面判别器将图像特征映射至高维球面空间,充分利用特征数据的高阶统计信息;然后,在传统判别器的基础上增加特征判别器,提取图像高频特征,重建特征高频分量和结构分量两方面;最后,对生成器与双判别器进行博弈训练,提高生成器重建图像质量。实验结果表明,所提算法能有效收敛,其网络能够稳定训练,峰值信噪比(PSNR)为31.28 dB,结构相似性(SSIM)为0.872,而与双三次差值、超分辨率残差网络(SRResNet)、加速的卷积神经网络超分辨率(FSRCNN)、基于GAN的单图像超分辨率(SRGAN)和增强型超分辨率生成对抗网络(ESRGAN)算法相比,所提算法的重建图像具有更加逼真的结构纹理细节。所提算法为基于GAN的图像超分辨率研究提供了球形矩匹配与特征判别的双判别方法,在实际应用中可行且有效。
参考文献
|
相关文章
|
多维度评价
Select
2.
尺度自适应的核相关滤波跟踪器
李麒骥, 李磊民, 黄玉清
计算机应用 2016, 36 (
12
): 3385-3388. DOI:
10.11772/j.issn.1001-9081.2016.12.3385
摘要
(
793
)
PDF
(811KB)(
671
)
可视化
收藏
为了解决核相关滤波(KCF)跟踪器中目标尺度固定的问题,提出了一种尺度自适应的跟踪方法。首先利用Lucas-Kanade光流法跟踪相邻视频帧之间特征点的运动,引入前向后向跟踪方法保留可信特征点;其次将可信点用于尺度变化估计;然后将尺度估计应用到可调高斯窗上;最后运用前向后向跟踪算法来判断目标是否处于被遮挡状态,修改了模板更新策略。解决了核跟踪滤波器中目标尺度固定的限制,使得跟踪器更具鲁棒性与准确性。在目标跟踪视频集上测试算法效果。实验结果表明,所提算法在成功率图与精确度图排名上均优于原KCF、TLD、Struck算法。与原方法相比,改进后的方法能更好地适用于有尺度变化与遮挡的跟踪。
参考文献
|
相关文章
|
多维度评价
Select
3.
融合偏微分方程和中值滤波的图像去噪模型
万山 李磊民 黄玉清
计算机应用 2011, 31 (
09
): 2512-2514. DOI:
10.3724/SP.J.1087.2011.02512
摘要
(
1574
)
PDF
(522KB)(
462
)
可视化
收藏
针对基于偏微分方程(PDE)的图像去噪模型不能有效地去除脉冲噪声,并且低阶偏微分方程在去噪的同时会出现“块效应”现象的问题,提出一种融合偏微分方程和自适应中值滤波的图像去噪模型。该模型通过对图像梯度的分析,在梯度变化剧烈区域和梯度变化微小区域利用二阶模型去噪以提高去噪效率;而在梯度渐变区域利用四阶模型平滑图像以避免出现“块效应”现象。同时,利用脉冲噪声梯度值远大于边缘梯度值的特点,定位脉冲噪声所在区域,在该区域利用自适应中值滤波消除脉冲噪声。该方法能有效去除脉冲噪声,保护图像边缘并消除“块效应”现象,同时提高了去噪效率。实验表明了该模型的有效性。
相关文章
|
多维度评价
Select
4.
基于特征模糊推理的形态学颗粒分割算法
韩明 李磊民 黄玉清
计算机应用 2010, 30 (
12
): 3278-3280.
摘要
(
1602
)
PDF
(718KB)(
1141
)
可视化
收藏
针对粘连或重叠颗粒图像的分割问题,提出了一种基于特征模糊推理的局部形态学重构参数计算方法,对传统的距离变换结合分水岭的算法进行了改进。在传统距离变换结合分水岭方法的基础上,将颗粒图像划分成若干连通区域,每个连通区域单独处理,使用形态学局部重构的方法抑制分水岭的过分割现象。通过对距离图像连通区域极大值进行统计分析,提取该连通区域的颗粒形态特征。将颗粒形态特征作为模糊输入,重构参数特征作为模糊输出,使用模糊推理方法自适应地计算重构参数,解决了重构参数选取的不确定性问题。最后对重构图像进行分水岭变换得到颗粒分割图像。实验结果表明,该方法对各种粘连状态的颗粒分割效果良好,克服了传统方法的过分割与参数自适应选择的问题。
相关文章
|
多维度评价