[1] 张良培,沈焕锋,张洪艳,等. 图像超分辨率重建[M]. 北京:科学出版社, 2012:3-11. (ZHANG L P, SHEN H F, ZHANG H Y, et al. Image Super-Resolution Reconstruction[M]. Beijing:Science Press, 2012:3-11) [2] 谢颂华,陈黎,聂晖. 基于联合插值-恢复的超分辨率图像盲复原[J]. 计算机应用, 2010, 30(2):341-343, 347. (XIE S H, CHEN L, NIE H. Blind image super-resolution restoration based on joint interpolation-restoration scheme[J]. Journal of Computer Applications, 2010, 30(2):341-343, 347.) [3] SEEMA R, BAILEY K. Multi-frame image super-resolution by interpolation and iterative backward projection[C]//Proceedings of the 2nd International Conference on Signal Processing and Communication. Piscataway:IEEE, 2019:36-40. [4] 陈晨,赵建伟,曹飞龙. 基于四通道卷积稀疏编码的图像超分辨率重建方法[J]. 计算机应用, 2018, 38(6):1777-1783. (CHEN C, ZHAO J W, CAO F L. Image super-resolution reconstruction method based on four-channel convolutional sparse coding[J]. Journal of Computer Applications, 2018, 38(6):1777-1783.) [5] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9906. Cham:Springer, 2016:391-407. [6] SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1874-1883. [7] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision, LNCS 8692. Cham:Springer, 2014:184-199. [8] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1637-1645. [9] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE 2017 Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:5835-5843. [10] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014:2672-2680. [11] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:105-114. [12] WANG X, YU K, WU S, et al. ESRGAN:enhanced super-resolution generative adversarial networks[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham:Springer, 2018:63-79. [13] FUGLEDE B, TOPSOE F. Jensen-Shannon divergence and Hilbert space embedding[C]//Proceedings of the 2004 International Symposium on Information Theory. Piscataway:IEEE, 2004:No.1365067. [14] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc., 2017:5767-5777. [15] LUO Y, ZHANG S, ZHENG W, et al. WGAN domain adaptation for EEG-based emotion recognition[C]//Proceedings of the 25th International Conference on Neural Information Processing, LNCS 11305. Cham:Springer, 2018:275-286. [16] PARK S W, KWON J. Sphere generative adversarial network based on geometric moment matching[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:4287-4296. [17] PARK S J, SON H, CHO S, et al. SRFeat:single image super-resolution with feature discrimination[C]//Proceedings of the 15th European Conference on Computer Vision, LNCS 11220. Cham:Springer, 2018:445-471. |