期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于双重检测的气门识别方法
佘维, 郑倩, 田钊, 刘炜, 李英豪
《计算机应用》唯一官方网站    2022, 42 (1): 273-279.   DOI: 10.11772/j.issn.1001-9081.2021020333
摘要324)   HTML11)    PDF (2307KB)(121)    收藏

针对目前工业中的气门识别方法存在重叠目标漏检率高、检测精度较低、目标包裹度差、圆心定位不准的问题,提出了一种基于双重检测的气门识别方法。首先,运用数据增强对样本进行轻量扩充;其次,以深度卷积网络为基础,加入空间金字塔池化层(SPP)和路径聚合网络(PAN),同时调整先验框,改进损失函数,从而提取气门预测框;最后,以霍夫圆变换(CHT)方法对预测框中的气门进行二次识别,从而达到精准识别气门区域的目的。把所提方法和原YOLOv3、YOLOv4、传统CHT方法进行对比,并采用精确率、召回率、交并比联合进行检测效果评估。实验结果表明,所提出的方法在检测精度和召回率上分别达到了97.1%和94.4%,相较原YOLOv3方法分别提高了2.9个百分点和1.8个百分点;且该方法使目标包裹度更好,目标中心点的定位更准确,其矫正框和真实框的交并比(IOU)达到了0.95,与传统CHT方法相比提高了0.05。所提方法在提高模型识别准确率的同时提高了目标抓取的成功率,在实际应用中有一定的实用价值。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 医学影像人工智能辅助诊断的样本增广方法
魏小娜, 李英豪, 王振宇, 李皓尊, 汪红志
计算机应用    2019, 39 (9): 2558-2567.   DOI: 10.11772/j.issn.1001-9081.2019030450
摘要543)      PDF (1697KB)(712)    收藏

针对不同领域人工智能(AI)应用研究所面临的采用常规手段获取大量样本时耗时耗力耗财的问题,许多AI研究领域提出了各种各样的样本增广方法。首先,对样本增广的研究背景与意义进行介绍;其次,归纳了几种公知领域(包括自然图像识别、字符识别、语义分析)的样本增广方法,并在此基础上详细论述了医学影像辅助诊断方面的样本获取或增广方法,包括X光片、计算机断层成像(CT)图像、磁共振成像(MRI)图像的样本增广方法;最后,对AI应用领域数据增广方法存在的关键问题进行总结,并对未来的发展趋势进行展望。经归纳总结可知,获取足够数量且具有广泛代表性的训练样本是所有领域AI研发的关键环节。无论是公知领域还是专业领域都进行样本增广,且不同领域甚至同一领域的不同研究方向,其样本获取或增广方法均不相同。此外,样本增广并不是简单地增加样本数量,而是尽可能再现小样本量无法完全覆盖的真实样本存在,进而提高样本多样性,增强AI系统性能。

参考文献 | 相关文章 | 多维度评价