1 |
LI C Y, MA Y B, WANG S Y, et al. Novel industrial robot sorting technology based on machine vision[C]// Proceedings of the 9th International Conference on Modelling, Identification and Control. Piscataway: IEEE, 2017: 902-907. 10.1109/icmic.2017.8321583
|
2 |
ALI M H, AIZAT K, YERKHAN K, et al. Vision-based robot manipulator for industrial applications[J]. Procedia Computer Science, 2018, 133: 205-212. 10.1016/j.procs.2018.07.025
|
3 |
刘振宇,李中生,赵雪,等. 基于机器视觉的工业机器人分拣技术研究[J]. 制造业自动化, 2013, 35(17):25-30. 10.3969/j.issn.1009-0134.2013.17.007
|
|
LIU Z Y, LI Z S, ZHAO X, et al. Research of sorting technology based on industrial robot of machine vision[J]. Manufacturing Automation, 2013, 35(17):25-30. 10.3969/j.issn.1009-0134.2013.17.007
|
4 |
YUAN B D, LIU M. Power histogram for circle detection on images[J]. Pattern Recognition, 2015, 48(10):3268-3280. 10.1016/j.patcog.2015.01.003
|
5 |
XU L, OJA E, KULTANEN P. A new curve detection method: Randomized Hough Transform (RHT)[J]. Pattern Recognition Letters, 1990, 11(5):331-338. 10.1016/0167-8655(90)90042-z
|
6 |
熊雪琴. 基于单目视觉的核电检修机人圆形目标识别与定位[D]. 衡阳:南华大学, 2020:55-62.
|
|
XIONG X Q. Recognition and positioning of circular target based on monocular vison-based nuclear power eduipment maintenance robot[D]. Hengyang: University of South China, 2020:55-62.
|
7 |
GIRSHICK R, DONAHUE J, DARRELL Tet al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1):142-158. 10.1109/tpami.2015.2437384
|
8 |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169
|
9 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:91-99.
|
10 |
李同,阮士峰,陈卓,等. 基于卷积神经网络的目标检测综述[J]. 科技经济导刊, 2020, 28(27):18-20. 10.1049/icp.2021.0583
|
|
LI T, RUAN S F, CHEN Z, et al. A review of target detection based on convolutional neural networks[J]. Technology and Economic Guide, 2020, 28(27):18-20. 10.1049/icp.2021.0583
|
11 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91
|
12 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6217-6225. 10.1109/cvpr.2017.690
|
13 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456.
|
14 |
HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28(1): 100-108. 10.2307/2346830
|
15 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2020-12-10].. 10.1109/cvpr.2018.00430
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778. 10.1109/cvpr.2016.90
|
17 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105.
|
18 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2020-12-27].. 10.1109/cvpr46437.2021.01283
|
19 |
李佳禧,邱东,杨宏韬,等. 基于改进的YOLO v3的工件识别方法研究[J]. 组合机床与自动化加工技术, 2020(8):92-96, 100. 10.13462/j.cnki.mmtamt.2020.08.023
|
|
LI J X, QIU D, YANG H T, et al. Research on identification method of workpiece based on improved YOLO v3 and deep separable convolutional networks[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2020(8):92-96, 100. 10.13462/j.cnki.mmtamt.2020.08.023
|
20 |
谢娟英,刘然. 基于深度学习的目标检测算法研究进展[J]. 陕西师范大学学报(自然科学版), 2019, 47(5):1-9. 10.15983/j.cnki.jsnu.2019.05.151
|
|
XIE J Y, LIU R. The study progress of object detection algorithm based on deep learning[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2019, 47(5):1-9. 10.15983/j.cnki.jsnu.2019.05.151
|
21 |
张为,魏晶晶. 嵌入DenseNet结构和空洞卷积模块的改进YOLO v3火灾检测算法[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(9):976-983. 10.1016/j.ifacol.2020.12.1994
|
|
ZHANG W, WEI J J. Improved YOLO v3 fire detection algorithm embedded in DenseNet structure and dilated convolution module[J]. Journal of Tianjin University (Science and Technology), 2020, 53(9):976-983. 10.1016/j.ifacol.2020.12.1994
|
22 |
田思佳,顾强,胡蓉,等. 一种基于深度学习的机械臂分拣方法[J]. 智能科学与技术学报, 2020, 2(3):268-274. 10.1109/icicta51737.2020.00035
|
|
TIAN S J, GU Q, HU R, et al. A robot sorting method based on deep learning[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3):268-274. 10.1109/icicta51737.2020.00035
|
23 |
董彪,熊风光,韩燮,等. 基于改进Yolo v3算法的遥感建筑物检测研究[J]. 计算机工程与应用, 2020, 56(18):209-213.
|
|
DONG B, XIONG F G, HAN X, et al. Research on remote sensing building detection based on improved Yolo v3 algorithm[J]. Computer Engineering and Applications, 2020, 56(18):209-213.
|