针对计算密集型神经网络在使用张量虚拟机(TVM)算符融合过程中对计算图进行逐层查找导致访问次数过多、内存资源利用率低等问题,提出一种基于图形重写和融合探索的TVM算符融合优化方法。首先,对运算符的映射类型进行分析;其次,基于运算定律对计算图进行重写,简化计算图结构以减少中间结果生成,降低内存资源消耗并提升融合效率;再次,采用融合探索算法寻找融合代价较小的算符优先进行融合,避免数据冗余和寄存器溢出;最后,在CPU上实现神经网络算符融合,并测试融合加速性能。实验结果表明,所提方法可有效减少计算图层数和算符个数,降低访存频率和数据传输量。与TVM算符融合方法相比,所提方法在融合过程中的计算图层数平均减少18%,推理速度平均提升23%,验证了该方法在优化计算图融合过程中的有效性。