针对图像分类任务中卷积网络提取图像细粒度特征能力不足、多属性之间的依赖关系无法识别的问题,提出一种基于YOLOv5的车辆多属性分类方法Multi-YOLOv5。该方法设计了多头非极大值抑制(Multi-NMS)和分离式标签损失(Separate-Loss)函数协同工作机制实现车辆的多属性分类任务,并采用卷积块注意力模块(CBAM)、SA(Shuffle Attention)和CoordConv方法重构了YOLOv5检测模型,分别从提升多属性特征能力提取、增强不同属性之间的关联关系、增强网络对位置信息的感知能力三方面提升模型对目标多属性分类的精准性。在VeRi等数据集上进行了训练与测试,实验结果表明,与基于GoogLeNet、残差网络(ResNet)、EfficientNet、ViT(Vision Transformer)等的网络结构相比,Multi-YOLOv5方法在目标的多属性分类方面取得了较好的识别结果,在VeRi数据集上,它的平均精度均值(mAP)达到了87.37%,较上述表现最佳的方法提高了4.47个百分点,且比原YOLOv5模型具有更好的鲁棒性,能为密集环境下的交通目标感知提供可靠的数据信息。
医学图像配准模型旨在建立图像间解剖位置的对应关系。传统的图像配准方法通过不断迭代获取形变场,耗费时间长且精度不高。深度神经网络不仅实现了端到端的形变场生成,加快了形变场的生成,而且进一步提升了图像配准的精度。针对目前的深度学习配准模型均采用单一的卷积神经网络(CNN)或Transformer架构,无法充分发挥CNN与Transformer结合的优势导致配准精度不足,以及图像配准后无法有效保持原始拓扑结构等问题,提出一种基于CNN与Transformer并行的医学图像配准模型PPCTNet(Parallel Processing of CNN and Transformer Network)。首先,选用目前配准精度优秀的Swin Transformer和极轻量化的CNN——LOCV-Net(Lightweight attentiOn-based ConVolutional Network)构建模型;其次,设计融合策略充分融合Swin Transformer与LOCV-Net提取的特征信息,使模型不仅拥有CNN的局部特征提取能力和Transformer的长距离依赖能力,还兼具轻量化的优势;最后,基于脑部磁共振成像(MRI)数据集,比较PPCTNet与10种经典图像配准模型。结果表明,相较于目前优秀的配准模型TransMorph (hybrid Transformer-ConvNet network for image registration),PPCTNet的最高配准精度提高了0.5个百分点,且形变场的折叠率下降了1.56个百分点,维持了配准图像的拓扑结构。此外,PPCTNet的参数量比TransMorph下降了10.39×106,计算量下降了278×109,体现了PPCTNet的轻量化优势。
针对云环境下资源拍卖机制设计问题,研究设计了一种更通用的多元抵制假名拍卖机制(GFAITH)。首先形式化定义了系统模型,其次围绕诚信和抵制假名的设计目标,证明了当考虑用户需求多样性时,会出现新的作弊形式——需求减少作弊,它将破坏诚信属性和抵制假名属性,且实验结果表明它将严重影响系统性能。据此,提出了GFAITH机制,从用户预处理、预分配与定价、抵制需求减少作弊三个阶段实现设计目标,并验证了GFAITH的资源分配是可行的,而且能够抵制假名。实验结果表明,GFAITH能从利润和社会财富等指标上有效保证系统的性能,验证了该机制的有效性和效率。