| 1 | 顾冬冬. 医学图像配准深度学习方法与应用研究[D]. 长沙:湖南大学, 2021:004518. | 
																													
																						|  | GU D D. Deep learning methods and applications of medical image registration[D]. Changsha: Hunan University, 2021:004518. | 
																													
																						| 2 | ASHBURNER J. A fast diffeomorphic image registration algorithm[J]. NeuroImage, 2007, 38(1): 95-113. | 
																													
																						| 3 | AVANTS B B, EPSTEIN C L, GROSSMAN M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain[J]. Medical Image Analysis, 2008, 12(1): 26-41. | 
																													
																						| 4 | GLOCKER B, KOMODAKIS N, TZIRITAS G, et al. Dense image registration through MRFs and efficient linear programming[J]. Medical Image Analysis, 2008, 12(6): 731-741. | 
																													
																						| 5 | JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2017-2025. | 
																													
																						| 6 | GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks [J]. Pattern Recognition, 2018, 77: 354-377. | 
																													
																						| 7 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2023-11-05].. | 
																													
																						| 8 | CHEN J, FREY E C, HE Y, et al. TransMorph: Transformer for unsupervised medical image registration[J]. Medical Image Analysis, 2022, 82: No.102615. | 
																													
																						| 9 | DENG L, ZOU Y, HUANG S, et al. Deformable 3D medical image registration with convolutional neural network and transformer [J]. Journal of Instrumentation, 2023, 18(4): No.P04029. | 
																													
																						| 10 | BEG M F, MILLER M I, TROUVÉ A, et al. Computing large deformation metric mappings via geodesic flows of diffeomorphisms[J]. International Journal of Computer Vision, 2005, 61(2): 139-157. | 
																													
																						| 11 | CHEN J, LI Y, DU Y, et al. Generating anthropomorphic phantoms using fully unsupervised deformable image registration with convolutional neural networks [J]. Medical Physics, 2020, 47(12): 6366-6380. | 
																													
																						| 12 | VIOLA P, W M, Ⅲ. WELLS Alignment by maximization of mutual information [J]. International Journal of Computer Vision, 1997, 24(2): 137-154. | 
																													
																						| 13 | BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: a learning framework for deformable medical image registration [J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788-1800. | 
																													
																						| 14 | VISHNEVSKIY V, GASS T, SZEKELY G, et al. Isotropic total variation regularization of displacements in parametric image registration [J]. IEEE Transactions on Medical Imaging, 2017, 36(2): 385-395. | 
																													
																						| 15 | JOHNSON H J, CHRISTENSEN G E. Consistent landmark and intensity-based image registration[J]. IEEE Transactions on Medical Imaging, 2002, 21(5): 450-461. | 
																													
																						| 16 | YANG X, KWITT R, STYNER M, et al. Quicksilver: fast predictive image registration — a deep learning approach [J]. NeuroImage, 2017, 158: 378-396. | 
																													
																						| 17 | SOKOOTI H, DE VOS B, BERENDSEN F, et al. 3D convolutional neural networks image registration based on efficient supervised learning from artificial deformations [EB/OL]. [2023-11-07]. . | 
																													
																						| 18 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. | 
																													
																						| 19 | ZHAO Q, ZHONG L, XIAO J, et al. Efficient multi-organ segmentation from 3D abdominal CT images with lightweight network and knowledge distillation[J]. IEEE Transactions on Medical Imaging, 2023, 42(9): 2513-2523. | 
																													
																						| 20 | KIM B, KIM D H, PARK S H, et al. CycleMorph: cycle consistent unsupervised deformable image registration[J]. Medical Image Analysis, 2021, 71: No.102036. | 
																													
																						| 21 | MODAT M, RIDGWAY G R, TAYLOR Z A, et al. Fast free-form deformation using graphics processing units[J]. Computer Methods and Programs in Biomedicine, 2010, 98(3): 278-284. | 
																													
																						| 22 | BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. An unsupervised learning model for deformable medical image registration [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9252-9260. | 
																													
																						| 23 | QIU H, QIN C, SCHUH A, et al. Learning diffeomorphic and modality-invariant registration using B-splines [C]// Proceedings of the 4th Conference on Medical Imaging with Deep Learning. New York: JMLR.org, 2021: 645-664. | 
																													
																						| 24 | CHEN J, HE Y, FREY E C, et al. ViT-V-Net: vision Transformer for unsupervised volumetric medical image registration [EB/OL]. [2023-11-07].. | 
																													
																						| 25 | WANG W, XIE E, LI X, et al. Pyramid vision Transformer: a versatile backbone for dense prediction without convolution [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558. | 
																													
																						| 26 | XIE Y, ZHANG J, SHEN C, et al. CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 12903. Cham: Springer, 2021: 171-180. | 
																													
																						| 27 | ZHOU H Y, GUO J, ZHANG Y, et al. nnFormer: interleaved transformer for volumetric segmentation [J]. IEEE Transactions on Image Processing, 2023, 32: 4036-4045. |