期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于优化变分模态分解和核极限学习机的集装箱吞吐量预测
张丰婷, 杨菊花, 任金荟, 金坤
《计算机应用》唯一官方网站    2022, 42 (8): 2333-2342.   DOI: 10.11772/j.issn.1001-9081.2021050816
摘要405)   HTML13)    PDF (1097KB)(149)    收藏

针对港口集装箱吞吐量数据的复杂性特征,提出基于优化变分模态分解(OVMD)和核极限学习机(KELM)的集装箱吞吐量短期混合预测模型。首先,用汉佩尔辨识法(HI)剔除原始时间序列中的异常值,并把预处理之后的序列通过OVMD分解为多个特征明显的子模态。然后,为提高预测效率,将分解后的子模态按照样本熵(SE)值的大小分成高频低幅、中频中幅和低频高幅三类;同时,借助KELM中携带的小波、高斯和线性核函数捕捉具有不同特征子模态的趋势。最后,把所有子模态的预测结果线性相加得到最终的预测结果。以深圳港的月度集装箱吞吐量数据为样本进行实验,所提模型的平均绝对误差(MAE)达到0.914?9,平均绝对百分比误差(MAPE)达到0.199%,均方根误差(RMSE)达到7.886?0,决定系数(R2)为0.994?4。与四种对比模型相比,所提出的模型在预测精度和效率上都具有一定的优势,同时克服了传统互补集成经验模态分解(CEEMD)和集成经验模态分解(EEMD)中容易出现的模态混叠问题以及极限学习机(ELM)中存在过拟合等问题,具有一定的实际应用潜力。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 适用于单轮单样例标注场景的主动学习停止准则
杨菊, 李青雯, 于化龙
计算机应用    2015, 35 (12): 3472-3476.   DOI: 10.11772/j.issn.1001-9081.2015.12.3472
摘要517)      PDF (735KB)(291)    收藏
针对现有的选择精度主动学习停止准则仅适用于批量样例标注场景这一问题,提出了一种适用于单轮单样例标注场景的改进的选择精度停止准则。该准则通过监督自本轮起前溯的固定学习轮次内的预测标记与真实标记间的匹配关系,对选择精度进行近似的评估计算,匹配度越高则选择精度越高,继而利用滑动时间窗实时监测该选择精度的变化,若当其高于事先设定的阈值,则停止主动学习算法的运行。以基于支持向量机的主动学习方法为例,通过6个基准数据集对该准则的有效性与可行性进行了验证,结果表明当选取合适的阈值时,该准则能找到主动学习停止的合理时机。该方法扩大了选择精度停止准则的适用范围,提升了其实用性。
参考文献 | 相关文章 | 多维度评价