1 |
NOTTEBOOM T. The adaptive capacity of container ports in an era of mega vessels: the case of upstream seaports Antwerp and Hamburg[J]. Journal of Transport Geography, 2016, 54: 295-309. 10.1016/j.jtrangeo.2016.06.002
|
2 |
TWRDY E, BATISTA M. Modeling of container throughput in Northern Adriatic ports over the period 1990-2013[J]. Journal of Transport Geography, 2016, 52: 131-142. 10.1016/j.jtrangeo.2016.03.005
|
3 |
LI M W, GENG J, HONG W C, et al. A novel approach based on the Gauss-vSVR with a new hybrid evolutionary algorithm and input vector decision method for port throughput forecasting[J]. Neural Computing and Applications, 2017, 28(S1): 621-640. 10.1007/s00521-016-2396-3
|
4 |
VILJOEN N M, JOUBERT J W. The vulnerability of the global container shipping network to targeted link disruption[J]. Physica A: Statistical Mechanics and its Applications, 2016, 462: 396-409. 10.1016/j.physa.2016.06.111
|
5 |
CHEN S H, CHEN J N. Forecasting container throughputs at ports using genetic programming[J]. Expert Systems with Applications, 2010, 37(3): 2054-2058. 10.1016/j.eswa.2009.06.054
|
6 |
ZHANG C, HUANG L, ZHAO Z C. Research on combination forecast of port cargo throughput based on time series and causality analysis[J]. Journal of Industrial Engineering and Management, 2013, 6(1): 124-134. 10.3926/jiem.687
|
7 |
杜柏松,艾万政,胡林燕,等.基于优化灰色马尔科夫动态模型的上海港集装箱吞吐量预测[J].上海海事大学学报, 2021, 42(1): 76-81.
|
|
DU B S, AI W Z, HU L Y, et al. Container throughput prediction of Shanghai port based on the optimized grey Markov dynamic model[J]. Journal of Shanghai Maritime University, 2021, 42(1): 76-81.
|
8 |
NIU M F, WANG Y F, SUN S L, et al. A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting[J]. Atmospheric Environment, 2016, 134: 168-180. 10.1016/j.atmosenv.2016.03.056
|
9 |
查茜.港口集装箱吞吐量时间序列预测方法研究[D].重庆:重庆大学, 2016: 9-17.
|
|
ZHA Q. Research on container throughput time series forecasting methods[D]. Chongqing: Chongqing University, 2016: 9-17.
|
10 |
KORDANULI B, BARJAKTAROVIĆ L, JEREMIĆ L, et al. Appraisal of artificial neural network for forecasting of economic parameters[J]. Physica A: Statistical Mechanics and its Applications, 2017, 465: 515-519. 10.1016/j.physa.2016.08.062
|
11 |
DIXON M. Sequence classification of the limit order book using recurrent neural networks[J]. Journal of Computational Science, 2018, 24: 277-286. 10.1016/j.jocs.2017.08.018
|
12 |
RICHHARIYA B, TANVEER M. EEG signal classification using universum support vector machine[J]. Expert Systems with Applications, 2018, 106: 169-182. 10.1016/j.eswa.2018.03.053
|
13 |
ZHANG Z G, KON M A. Wavelet sampling and generalization in neural networks[J]. Neurocomputing, 2017, 267: 36-54. 10.1016/j.neucom.2017.04.054
|
14 |
GOSASANG V, CHANDRAPRAKAIKUL W, KIATTISIN S. A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok Port[J]. The Asian Journal of Shipping and Logistics, 2011, 27(3): 463-482. 10.1016/s2092-5212(11)80022-2
|
15 |
XIE G, WANG S Y, ZHAO Y X, et al. Hybrid approaches based on LSSVR model for container throughput forecasting: a comparative study[J]. Applied Soft Computing, 2013, 13(5): 2232-2241. 10.1016/j.asoc.2013.02.002
|
16 |
GENG J, LI M W, DONG Z H, et al. Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm[J]. Neurocomputing, 2015, 147: 239-250. 10.1016/j.neucom.2014.06.070
|
17 |
LI B, RONG X W, LI Y B. An improved kernel based extreme learning machine for robot execution failures[J]. The Scientific World Journal, 2014, 2014: No.906546. 10.1155/2014/906546
|
18 |
张如九,严磊,何旭辉,等.基于混合方法的风速预测模型研究[J].铁道科学与工程学报, 2020, 17(7): 1630-1636.
|
|
ZHANG R J, YAN L, HE X H, et al. Research on wind velocity prediction models based on hybrid methods[J]. Journal of Railway Science and Engineering, 2020, 17(7): 1630-1636.
|
19 |
CHANG Y S, CHIAO H T, ABIMANNAN S, et al. An LSTM-based aggregated model for air pollution forecasting[J]. Atmospheric Pollution Research, 2020, 11(8): 1451-1463. 10.1016/j.apr.2020.05.015
|
20 |
徐玉萍,邓俊翔,蒋泽华.基于组合预测模型的铁路货运量预测研究[J].铁道科学与工程学报, 2021, 18(1): 243-249.
|
|
XU Y P, DENG J X, JIANG Z H. Railway freight volume forecasting based on a combined model[J]. Journal of Railway Science and Engineering, 2021, 18(1): 243-249.
|
21 |
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. 10.1109/tsp.2013.2288675
|
22 |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. 10.1016/j.neucom.2005.12.126
|
23 |
NIU M F, HU Y Y, SUN S L, et al. A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting[J]. Applied Mathematical Modelling, 2018, 57: 163-178. 10.1016/j.apm.2018.01.014
|
24 |
DU P, WANG J Z, YANG W D, et al. Container throughput forecasting using a novel hybrid learning method with error correction strategy[J]. Knowledge-Based Systems, 2019, 182: No.104853. 10.1016/j.knosys.2019.07.024
|
25 |
LI H T, BAI J C, LI Y W. A novel secondary decomposition learning paradigm with kernel extreme learning machine for multi-step forecasting of container throughput[J]. Physica A: Statistical Mechanics and its Applications, 2019, 534: No.122025. 10.1016/j.physa.2019.122025
|
26 |
DING M, ZHOU H, XIE H, et al. A time series model based on hybrid-kernel least-squares support vector machine for short-term wind power forecasting[J]. ISA Transactions, 2021, 108: 58-68. 10.1016/j.isatra.2020.09.002
|
27 |
JIN F, LI Y W, SUN S L, et al. Forecasting air passenger demand with a new hybrid ensemble approach[J]. Journal of Air Transport Management, 2020, 83: No.101744. 10.1016/j.jairtraman.2019.101744
|
28 |
RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology — Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. 10.1152/ajpheart.2000.278.6.h2039
|
29 |
李文武,石强,李丹,等.基于VMD和PSO-SVR的短期电力负荷多阶段优化预测[J/OL].中国电力. (2020-12-21) [2021-03-21]. . 10.1061/9780784482858.019
|
|
LI W W, SHI Q, LI D, et al. Multi-stage optimization forecast of short-term power load based on VMD and PSO-SVR[J/OL]. Electric Power. (2020-12-21) [2021-03-21]. . 10.1061/9780784482858.019
|