期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 结合空间域和频域信息的双分支低光照图像增强网络
李大海, 王忠华, 王振东
《计算机应用》唯一官方网站    2024, 44 (7): 2175-2182.   DOI: 10.11772/j.issn.1001-9081.2023070933
摘要388)   HTML14)    PDF (3079KB)(940)    收藏

针对低光照图像增强中纹理细节模糊和颜色失真的问题,从空间域和频域信息结合的角度出发,提出一个端到端的轻量级双分支网络(SAFNet)。SAFNet使用基于Transformer的空间域处理模块和频域处理模块在空间域分支和频域分支分别对图像的空间域信息和傅里叶变换后的频域信息进行处理,并通过注意力机制引导两个分支的特征进行自适应融合,得到最终增强的图像。此外,针对频域信息提出一个频域损失函数作为联合损失函数的一部分,通过联合损失函数在空间域和频域都对SAFNet进行约束。在公开数据集LOL和LSRW上进行实验,在LOL上,SAFNet在客观指标结构相似性(SSIM)和学习感知图像块相似度(LPIPS)两项指标上分别达到0.823和0.114;在LSRW上,峰值信噪比(PSNR)和SSIM分别达到17.234 dB和0.550,均优于LLFormer (Low-Light Transformer)、IAT (Illumination Adaptive Transformer)、 KinD (Kindling the Darkness)++等主流方法,且网络参数量仅为0.07×106;在DarkFace数据集上,使用SAFNet作为预处理步骤对待检测图像进行增强,可以使人脸检测平均精确率从52.6%提升至72.5%。实验结果表明,SAFNet能有效提高低光照图像的质量,并能显著改善下游任务低光照人脸检测的性能。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于改进YOLOv8的水下目标检测算法
李大海, 李冰涛, 王振东
《计算机应用》唯一官方网站    2024, 44 (11): 3610-3616.   DOI: 10.11772/j.issn.1001-9081.2023111550
摘要588)   HTML20)    PDF (1637KB)(754)    收藏

由于水下生物的特性,水下图像中存在较多难以检测的小目标,且目标之间经常相互遮挡,而水下环境中的光线吸收和散射也会造成水下图像的颜色偏移和模糊。针对上述问题,提出水下目标检测算法WCA-YOLOv8。首先,设计特征融合模块(FFM),增强对空间维度信息的关注,提升对模糊和颜色偏移目标的识别能力;其次,加入FCA(FReLU Coordinate Attention)模块,增强对相互重叠、遮挡水下目标的特征提取能力;再次,为了提高模型对水下小目标的检测性能,将完整交并比(CIoU)损失函数替换为WIoU v3(Wise-IoU version 3)损失函数;最后,设计下采样增强模块(DEM),使特征提取过程中保存的上下文信息更完整,改善水下目标检测的性能。RUOD和URPC数据集上的实验结果表明,WCA-YOLOv8的检测平均精度均值(mAP0.5)分别为75.8%和88.6%,检测速度分别为60 frame/s和57 frame/s。与其他前沿的水下物体检测算法相比,WCA-YOLOv8不仅能够获得更高的检测准确性,还可达到更快的检测速度。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 基于多个改进策略的增强麻雀搜索算法
李大海, 詹美欣, 王振东
《计算机应用》唯一官方网站    2023, 43 (9): 2845-2854.   DOI: 10.11772/j.issn.1001-9081.2022081270
摘要550)   HTML10)    PDF (4003KB)(218)    收藏

针对麻雀搜索算法(SSA)存在寻优精度不高且易陷入局部最优的问题,提出一种基于多个改进策略的增强麻雀搜索算法(EMISSA)。首先,为平衡算法的全局和局部搜索能力,引入模糊逻辑来动态调整麻雀发现者的规模;其次,对麻雀跟随者进行混合差分变异操作以产生变异子群,从而增强EMISSA跳出局部最优的能力;最后,通过拓扑对立学习(TOBL)产生当前麻雀发现者个体的拓扑对立解,以充分挖掘搜索空间内的优质位置信息。通过2013年进化计算大会(CEC2013)中的12个测试函数评估EMISSA、标准SSA以及混沌麻雀搜索优化算法(CSSOA)等改进麻雀算法的性能。实验结果表明,EMISSA在30维情况下,在12个测试函数上获得了11个第一;在80维情况下,在所有的测试函数上都获得了第一。而在Friedman检验中,EMISSA的排名均获得了第一。将EMISSA应用于障碍物环境下的无线传感器网络(WSN)节点部署,实验结果表明,相较于其他算法,EMISSA获得了最高的无线节点覆盖率,节点分布更均匀,覆盖冗余更少。

图表 | 参考文献 | 相关文章 | 多维度评价
4. 基于动态D向分割和混沌扰动的阴阳对优化算法
李大海, 刘庆腾, 艾志刚, 王振东
《计算机应用》唯一官方网站    2022, 42 (9): 2788-2799.   DOI: 10.11772/j.issn.1001-9081.2021071342
摘要421)   HTML3)    PDF (1671KB)(116)    收藏

为提高YYPO-SA1的性能,提出了一种基于动态D向分割和混沌扰动的阴阳对优化算法(NYYPO)。首先,基于牛顿衰减机制来动态调整YYPO-SA1中的D向分割概率;然后,在分割阶段加入混沌扰动策略,NYYPO利用动态调整机制在搜索前期使用较大的D向分割概率,在搜索后期则使用较小的D向分割概率,从而提高了算法的全局搜索能力,同时使用混沌扰动策略丰富了解的多样性,并提高了算法跳出局部最优的能力;最后,将NYYPO应用于风力发电机的参数优化设计问题。选用了15个单峰、多峰和组合测试函数进行性能评估,将NYYPO、YYPO-SA1以及6个代表性的单目标优化算法:粒子群优化(PSO)算法、乌鸦搜索算法(CSA)、灰狼优化算法(GWO)、鲸鱼优化算法(WOA)、花授粉算法(FPA)、麻雀搜索算法(SSA)进行性能评测比较。结果表明NYYPO相较于YYPO-SA1在Sphere函数上有着12个数量级的提升。而在Friedman检验中NYYPO在10维、30维、50维的时候的平均排名分别为2.87、2.0、1.93,均为总排名第一,可见NYYPO在统计学意义上具有显著的性能优势。同时,在风力发电机参数优化设计问题中NYYPO也取得了更好的优化结果。

图表 | 参考文献 | 相关文章 | 多维度评价