期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于实例的强分类器快速集成方法
许业旺, 王永利, 赵忠文
计算机应用    2017, 37 (4): 1100-1104.   DOI: 10.11772/j.issn.1001-9081.2017.04.1100
摘要554)      PDF (764KB)(473)    收藏
针对集成分类器由于基分类器过弱,需要牺牲大量训练时间才能取得高精度的问题,提出一种基于实例的强分类器快速集成方法——FSE。首先通过基分类器评价方法剔除不合格分类器,再对分类器进行精确度和差异性排序,从而得到一组精度最高、差异性最大的分类器;然后通过FSE集成算法打破已有的样本分布,重新采样使分类器更多地关注难学习的样本,并以此决定各分类器的权重并集成。实验通过与集成分类器Boosting在UCI数据库和真实数据集上进行比对,Boosting构造的集成分类器的识别精度最高分别能达到90.2%和90.4%,而使用FSE方法的集成分类器精度分别能达到95.6%和93.9%;而且两者在达到相同精度时,使用FSE方法的集成分类器分别缩短了75%和80%的训练时间。实验结果表明,FSE集成模型能有效提高识别精度、缩短训练时间。
参考文献 | 相关文章 | 多维度评价
2. 云计算环境下基于蜜蜂觅食行为的任务负载均衡算法
杨石, 王艳玲, 王永利
计算机应用    2015, 35 (4): 938-943.   DOI: 10.11772/j.issn.1001-9081.2015.04.0938
摘要717)      PDF (839KB)(839)    收藏

针对云计算环境下的任务调度程序通常需要较多响应时间和通信成本的问题,提出了一种基于蜜蜂行为的负载均衡(HBB-LB)算法。首先,利用虚拟机(VM)进行负载平衡来最大化吞吐量;然后,对机器上任务的优先级进行平衡;最后,将平衡重点放在减少VM等待序列中任务的等待时间上,从而提高处理过程的整体吞吐量和优先级。利用CloudSim工具模拟云计算环境进行仿真实验,结果表明,相比粒子群优化(PSO)、蚁群算法(ACO)、动态负载均衡(DLB)、先入先出(FIFO)和加权轮询(WRR)算法, HBB-LB算法的平均响应时间分别节省了5%、13%、17%、67%、37%,最大完成时间分别节省了20%、23%、18%、55%、46%,可以更好地平衡非抢占式独立任务,适用于异构云计算系统。

参考文献 | 相关文章 | 多维度评价
3. 适于数据流组合分类的直推学习方法
刁树民 王永利
计算机应用    2009, 29 (06): 1578-1581.  
摘要1189)      PDF (546KB)(1305)    收藏
在进行组合决策时,已有的组合分类方法需要对多个组合分类器均有效的公共已知标签训练样本。为了解决在没有已知标签样本的情况下数据流组合分类决策问题,提出一种基于约束学习的数据流组合分类器的融合策略。在判定测试样本上的决策时,根据直推学习理论设计满足每一个局部分类器约束度量的方法,保证了约束的可行性,解决了分布式分类聚集时最大熵的直推扩展问题。测试数据集上的实验证明,与已有的直推学习方法相比,此方法可以获得更好的决策精度,可以应用于数据流组合分类的融合。
相关文章 | 多维度评价