计算机应用 ›› 2009, Vol. 29 ›› Issue (06): 1578-1581.
• 数据挖掘 • 上一篇 下一篇
刁树民1,王永利2
收稿日期:
修回日期:
发布日期:
出版日期:
通讯作者:
基金资助:
Received:
Revised:
Online:
Published:
摘要: 在进行组合决策时,已有的组合分类方法需要对多个组合分类器均有效的公共已知标签训练样本。为了解决在没有已知标签样本的情况下数据流组合分类决策问题,提出一种基于约束学习的数据流组合分类器的融合策略。在判定测试样本上的决策时,根据直推学习理论设计满足每一个局部分类器约束度量的方法,保证了约束的可行性,解决了分布式分类聚集时最大熵的直推扩展问题。测试数据集上的实验证明,与已有的直推学习方法相比,此方法可以获得更好的决策精度,可以应用于数据流组合分类的融合。
关键词: 数据流, 基于约束学习, 直推学习, 最大熵, 分布式组合分类, data streams, constraint-based learning, transductive learning, maximum entropy, distributed ensemble classification
Abstract: The existing strategy of combining decisions for ensemble classification method requires common labeled training samples across these ensemble classifiers. To resolve combining classifiers decisions among ensemble classification over data streams without labeled examples, a transductive constraint-based learning strategy was proposed. It satisfied the constraints measured by each local classifier based on transductive learning theory while choosing decision on test samples; thereby guaranteed the feasibility of the constraints. It solved the problems of transductive extension of maximum entropy for aggregation in distributed classification. Experimental examples prove that the proposed method can achieve higher classifying accuracy over the existing transductive approach and can be applied to ensemble classification fusing for data streams.
刁树民 王永利. 适于数据流组合分类的直推学习方法[J]. 计算机应用, 2009, 29(06): 1578-1581.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.joca.cn/CN/
http://www.joca.cn/CN/Y2009/V29/I06/1578