近年来,生成对抗网络(GAN)用于低剂量计算机断层成像(LDCT)图像降噪已经表现出显著的性能优势,成为该领域的研究热点。然而,GAN的生成器对LDCT图像中噪声和伪影分布的感知能力不足,导致网络的降噪性能受限。因此,提出一种基于双编码器双解码器生成对抗网络(DualED-GAN)的低剂量CT降噪模型。首先,提出由一对编解码器构成伪影像素级特征提取通道,用于估计LDCT中的伪影噪声;其次,提出由另外一对编解码器构成伪影掩码信息提取通道,用于估计伪影的强度和位置信息;最后,采用伪影图像质量标签图辅助估计伪影的掩码信息,可以为伪影像素级特征提取通道提供补充特征,进而提高GAN降噪网络对伪影噪声分布强度的敏感性。实验结果表明,在mayo测试集上与次优模型DESD-GAN(Dual-Encoder-Single-Decoder based Generative Adversarial Network)相比,所提模型的平均峰值信噪比(PSNR)提高了0.338 7 dB,平均结构相似性度(SSIM)提高了0.002 8。可见,所提模型在伪影抑制、结构保留与模型鲁棒性方面均有更好的表现。
针对现有群体推荐方法较少考虑群体成员间社会化关系的隐式估计以及利用群体共识减少偏好冲突的问题,提出一种基于隐式信任和群体共识的群体推荐方法(GR-TC),所提方法分为推荐阶段和共识阶段。在推荐阶段根据成员间偏好信息和社交关系挖掘隐式信任值,估计成员的个人偏好、权重和初始群体偏好;在共识阶段通过共识测量和识别规则识别不一致成员,建立最大和谐度优化共识模型,调整更新群体偏好,传递群体推荐列表。实验结果表明,成员间社交关系影响群体推荐结果,合理选择隐式信任权值会提高不一致成员的和谐度;相较于传统共识反馈机制,隐式信任诱导的最大和谐共识反馈机制调整成本更小,对不一致成员的影响更小。
针对在群体决策中如何利用专家之间的社会关系和决策专家的有限理性的问题,提出一种信任网络下的TODIM群体决策方法。首先,根据专家讨论次数,在每一次讨论中,每个专家会根据信任接受程度参考信任者的决策矩阵,并通过信息交互和协商修改决策矩阵;其次,当达到设定的专家讨论次数时,计算最终的群体决策矩阵;最后,分别运用信任网络下的TODIM群体决策方法和TODIM群体决策方法计算各方案排序。对所得结果进行对比分析,并对专家讨论次数和信任接受程度进行灵敏度分析。案例分析结果表明,信任网络下的TODIM群体决策方法能充分结合信任网络,保证了决策过程中的多阶段信息交互和反馈过程,并在对比分析和灵敏度分析上优于对比方法。
针对采用时域滤波器解析重建后图像存在伪影和图像细节丢失等问题,提出了一种基于卷积神经网络(CNN)的时频域计算机断层扫描(CT)重建算法。首先,在频域中构建了基于卷积神经网络的滤波器网络,实现投影数据的频域滤波;其次,利用反投影操作算子对频域滤波后结果进行域转换得到重建图像;接着,在图像域构建网络对来自反投影层的图像进行处理;最后,在采用最小均方误差损失函数基础上引入多尺度结构相似度损失函数组成复合损失函数,减轻神经网络对结果图像的模糊效应,保留重建图像细节。图像域网络和投影域滤波网络联合作用,最终得到重建结果。在临床数据集上验证了所提算法的有效性,相较于滤波反投影(FBP)算法、全变分(TV)算法及图像域残差编解码CNN(RED-CNN)算法,当投影数目分别为180和90时,所提算法重建结果图像信噪比(PSNR)和结构相似度(SSIM)最高,且归一化均方根误差(NMSE)最小;当投影数目为360时,所提算法仅次于TV算法。实验结果表明,所提算法可以提高CT图像重建图像质量,是一种可行且有效的方法。
针对在求解时变优化问题的过程中传统的迭代算法容易产生较大的漂移误差,以及预测矫正算法收敛性能不佳等问题,提出一种基于神经动力学方法的固定时间时变算法。首先,通过对数障碍罚函数法将具有时变目标函数和时变约束函数的时变优化问题转化为无约束优化问题;其次,引入固定时间稳定性的概念设计算法,用于跟踪时变优化问题的最优解;同时,通过李雅普诺夫理论证明了所提算法的收敛性和固定时间稳定性。与有限时间收敛算法相比,所提算法能在固定时间内收敛到时变问题的最优解,且收敛时间与系统的初始值无关。数值仿真实验结果表明:所提算法能在约0.5 s之前追踪到时变优化问题的最优解且收敛精度保持在10-5以下。与预测矫正算法相比,所提算法在保持良好的收敛精度的同时,收敛时间缩短了约0.3 s。将所提算法应用到2组机器人导航实验中,实验结果表明:所提算法能在不同初始条件下实现移动机器人的实时避障和导航。