针对多项选择问答(MCQA)领域中原始数据信息不准确、样本质量低以及模型泛化能力差等问题,提出一种基于图卷积网络(GCN)的掩码数据增强模型GMDA(Graph convolution network-based MASK Data Augmentation)。该模型以GCN作为基础框架,首先将文章中的单词抽象为图节点,并利用问题-候选答案(QA)对节点进行连接,建立与相关的文章节点之间的联系;其次,计算节点之间的相似性,并应用掩码技术对图中的节点进行掩盖,从而生成增强样本;再次,利用GCN对增强样本进行特征扩充,以提升模型的信息表达能力;最后,引入打分器对原始样本和增强样本进行评分,并结合课程学习策略提高答案预测的准确性。综合评估实验结果表明:与RACE-M、RACE-H数据集上的最优基线模型EAM相比,所提模型GMDA的准确率分别平均提高了0.8、0.4个百分点,而与DREAM数据集上的最优基线模型STM(SelfTraining Method)相比,GMDA模型的准确率平均提高了1.4个百分点。此外,对比实验的结果也验证了GMDA模型在MCQA任务中的有效性,可为数据增强技术在该领域的进一步研究和应用提供帮助。