针对现有的跨级高效用项集挖掘(HUIM)算法非常耗时且占用大量内存的问题,提出一种基于数据索引结构的跨级高效用项集挖掘算法(DISCH)。首先,为了高效存储和快速检索到搜索空间中的所有项集,拓展带有分类信息和索引信息的效用链表为数据索引结构(DIS);然后,为了提高内存利用率,对不满足条件的效用链表所占的内存进行回收再分配;最后,在构建效用链表时使用提前结束策略,以减少效用链表的产生。基于真实零售数据集和合成数据集进行的实验结果表明,与CLH-Miner (Cross-Level High utility itemsets Miner)算法相比,DISCH在运行时间上平均降低了77.6%,同时在内存消耗上平均降低了73.3%,可见该算法能高效完成跨级高效用项集的搜索,并且降低算法的内存消耗。