爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物搜索算法(MHCS-RSA)。MHCS-RSA保留了RSA包围阶段(全局探索)和狩猎阶段(局部开发)中狩猎合作的位置更新公式,在狩猎阶段,将狩猎协调融合TLBO算法的学习阶段和二次插值的BAS进行位置更新,以增强算法的开发能力和收敛能力;此外,引入透镜成像反向学习策略以增强算法跳出局部最优的能力。在CEC 2020测试函数上的实验结果表明,MHCS-RSA具有良好的寻优能力、收敛能力以及鲁棒性。最后通过对拉力/压力弹簧设计问题和减速器设计问题的求解,进一步验证了MHCS-RSA求解实际问题的有效性。