期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 融合多狩猎协调策略的爬行动物搜索算法
力尚龙, 刘建华, 贾鹤鸣
《计算机应用》唯一官方网站    2024, 44 (9): 2818-2828.   DOI: 10.11772/j.issn.1001-9081.2023091304
摘要171)   HTML3)    PDF (1883KB)(203)    收藏

爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物搜索算法(MHCS-RSA)。MHCS-RSA保留了RSA包围阶段(全局探索)和狩猎阶段(局部开发)中狩猎合作的位置更新公式,在狩猎阶段,将狩猎协调融合TLBO算法的学习阶段和二次插值的BAS进行位置更新,以增强算法的开发能力和收敛能力;此外,引入透镜成像反向学习策略以增强算法跳出局部最优的能力。在CEC 2020测试函数上的实验结果表明,MHCS-RSA具有良好的寻优能力、收敛能力以及鲁棒性。最后通过对拉力/压力弹簧设计问题和减速器设计问题的求解,进一步验证了MHCS-RSA求解实际问题的有效性。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于混沌宿主切换机制的 鱼优化算法
贾鹤鸣, 力尚龙, 陈丽珍, 刘庆鑫, 吴迪, 郑荣
《计算机应用》唯一官方网站    2023, 43 (6): 1759-1767.   DOI: 10.11772/j.issn.1001-9081.2022060901
摘要377)   HTML9)    PDF (1965KB)(218)    收藏

?鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主切换机制的改进?鱼优化算法(MROA)。首先,设计一种新的宿主切换机制,以更好地平衡探索和开发的能力;然后,为了使?鱼初始宿主多样化,引入Tent混沌映射进行种群初始化,进一步优化算法的性能;最后,将MROA与原始ROA和爬行动物搜索算法(RSA)等6种算法在CEC2020测试函数上进行对比实验。分析实验结果可知,MROA求得的最优适应度值、平均适应度值和适应度值标准差分别比ROA、RSA、鲸鱼优化算法(WOA)、哈里斯鹰优化(HHO)算法、精子群优化(SSO)算法、正余弦算法(SCA)和乌燕鸥优化算法(STOA)平均提高了28%、33%和12%。基于CEC2020的测试结果表明,MROA具有良好的寻优能力、收敛能力和鲁棒性;同时,通过求解焊接梁设计问题和多片式离合器制动器设计问题,进一步验证了MROA在工程问题中的有效性。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 基于轻量级卷积神经网络的植物叶片病害识别方法
贾鹤鸣, 郎春博, 姜子超
计算机应用    2021, 41 (6): 1812-1819.   DOI: 10.11772/j.issn.1001-9081.2020091471
摘要813)      PDF (1486KB)(584)    收藏
针对目前农业信息领域植物病害识别精度较低、实时性较差的问题,提出了一种基于轻量级卷积神经网络(CNN)的植物叶片病害识别方法。在原有网络中引入深度可分离卷积(DSC)和全局平均池化(GAP)方法,分别用来代替标准卷积运算操作并对网络末端的全连接层部分进行替换。同时,批归一化的技巧也被运用到训练网络的过程中,以改善中间层数据分布并提高收敛速度。为全面而可靠地评估所提方法的性能,在公开的植物叶片病害图像数据集PlantVillage上进行实验,选取损失函数收敛曲线、测试精度、参数内存需求等指标来验证改进策略的有效性。实验结果表明,改进后的网络具有较高的病害识别精度(99.427%)以及较小的内存空间占用(6.47 MB),可见其与其他基于神经网络的叶片识别技术相比具有优势,工程实用性较强。
参考文献 | 相关文章 | 多维度评价
4. 基于改进共生生物搜索算法的林火图像多阈值分割
贾鹤鸣, 李瑶, 姜子超, 孙康健
计算机应用    2021, 41 (5): 1465-1470.   DOI: 10.11772/j.issn.1001-9081.2020081221
摘要403)      PDF (1606KB)(473)    收藏
针对传统多阈值分割方法计算复杂度随着阈值个数的增加而增长,以及对给定图像进行多阈值分割操作时效率很低等问题,提出了一种基于共生生物搜索(SOS)算法结合Kapur熵的多阈值分割方法。首先将精英反策略(EOBL)引入到SOS算法的共栖阶段,从而改善传统SOS算法处理复杂优化问题时易陷入局部最优的问题;然后引入莱维飞行策略扩大SOS算法的的搜索范围,增强其搜索轨迹的随机性;最终将得到的改进共生生物搜索(MSOS)算法应用到林火图像最佳阈值的选取问题上。实验结果表明,与粒子群优化算法、和声搜索算法、蝙蝠算法等对比算法相比,所提算法能更好地分割图像,在实际工程问题中具有一定的实用性和价值。
参考文献 | 相关文章 | 多维度评价
5. 基于改进斑点鬣狗优化算法的同步优化特征选择
贾鹤鸣, 姜子超, 李瑶, 孙康健
计算机应用    2021, 41 (5): 1290-1298.   DOI: 10.11772/j.issn.1001-9081.2020081192
摘要498)      PDF (1335KB)(706)    收藏
针对传统支持向量机(SVM)在封装式特征选择中分类精度低、特征子集选择冗余以及计算效率差的不足,利用元启发式优化算法同步优化SVM与特征选择。为改善SVM分类效果以及选择特征子集的能力,首先,利用自适应差分进化(DE)算法、混沌初始化与锦标赛选择策略对斑点鬣狗优化(SHO)算法改进,以增强其局部搜索能力并提高其寻优效率与求解精度;其次,将改进后的算法用于特征选择与SVM参数调整的同步优化中;最后,在UCI数据集进行特征选择仿真实验,采取分类准确率、选择特征数、适应度值及运行时间来综合评估所提算法的优化性能。实验结果证明,改进算法的同步优化机制能够在高分类准确率下降低特征选择的数目,该算法比传统算法更适合解决封装式特征选择问题,具有良好的应用价值。
参考文献 | 相关文章 | 多维度评价