[1] 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能,2014,27(4):327-336.(HE Q,LI N,LUO W J,et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence,2014,27(4):327-336.) [2] LI J,CHENG K,WANG S,et al. Feature selection:a data perspective[J]. ACM Computing Surveys,2016,50(6):No. 94. [3] 李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述[J]. 计算机工程与应用,2019,55(24):10-19.(LI Z Q,DU J Q,NIE B,et al. Summary of feature selection methods[J]. Computer Engineering and Applications,2019,55(24):10-19.) [4] JIA H,XING Z,SONG W. A new hybrid seagull optimization algorithm for feature selection[J]. IEEE Access,2019,7:49614-49631. [5] 张翠军, 陈贝贝, 周冲, 等. 基于多目标骨架粒子群优化的特征选择算法[J]. 计算机应用,2018,38(11):3156-3160,3166. (ZHANG C J,CHEN B B,ZHOU C,et al. Feature selection algorithm based on multi-objective bare-bones particle swarm optimization[J]. Journal of Computer Applications, 2018, 38(11):3156-3160,3166.) [6] MAFARJA M M,MIRJALILI S. Whale optimization approaches for wrapper feature selection[J]. Applied Soft Computing,2018,62:441-453. [7] 张霞, 庞秀平. 基于增强蜂群优化算法的特征选择算法[J]. 计算机应用,2016,36(5):1307-1312,1318.(ZHANG X,PANG X P. Feature selection algorithms base on enhanced bee colony optimization algorithm[J]. Journal of Computer Applications, 2016,36(5):1307-1312,1318.) [8] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297. [9] 庄严, 白振林, 许云峰. 基于蚁群算法的支持向量机参数选择方法研究[J]. 计算机仿真,2011,28(5):216-219.(ZHUANG Y, BAI Z L,XU Y F. Research on parameters of support vector machine based on ant colony algorithm[J]. Computer Simulation, 2011,28(5):216-219.) [10] HUANG C L,WANG C J. A GA-based feature selection and parameters optimization for support vector machines[J]. Expert Systems with Applications,2006,31(2):231-240. [11] 张进, 丁胜, 李波. 改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法[J]. 计算机应用,2016,36(5):1330-1335.(ZHANG J,DING S,LI B. Improved particle swarm optimization algorithm for support vector machine feature selection and optimization of parameters[J]. Journal of Computer Applications,2016,36(5):1330-1335.) [12] STORN R,PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997,11(4):341-359. [13] ZHENG X,LU D,WANG X,et al. A cooperative coevolutionary biogeography-based optimizer[J]. Applied Intelligence,2015,43(1):95-111. [14] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence,2007,1(1):33-57. [15] YANG X S, DEB S. Cuckoo search:recent advances and applications[J]. Neural Computing and Applications,2014,24(1):169-174. [16] MIRJALILI S,MIRJALILI S M,LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software,2014,69:46-61. [17] MIRJALILI S,LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95:51-67. [18] ALABERT A,BERTI A,CABALLERO R,et al. No-free-lunch theorems in the continuum[J]. Theoretical Computer Science, 2015,600:98-106. [19] DHIMAN G,KUMAR V. Spotted hyena optimizer:a novel bioinspired based metaheuristic technique for engineering applications[J]. Advances in Engineering Software,2017,114:48-70. [20] KUMAR V,KAUR A. Binary spotted hyena optimizer and its application to feature selection[J]. Journal of Ambient Intelligence and Humanized Computing,2020,11(7):2625-2645. [21] JIA H, LI J, SONG W, et al. Spotted hyena optimization algorithm with simulated annealing for feature selection[J]. IEEE Access,2019,7:71943-71962. [22] LIN Q,ZHU Q,HUANG P,et al. A novel hybrid multi-objective immune algorithm with adaptive differential evolution[J]. Computers and Operations Research,2015,62:95-111. [23] 王日宏, 李祥, 李娜. 基于高斯扰动和混沌初始化的狼群算法[J]. 计算机工程与设计,2019,40(10):2879-2884.(WANG R H, LI X, LI N. Wolf pack algorithm based on Gaussian disturbance and chaotic initialization[J]. Computer Engineering and Design,2019,40(10):2879-2884.) [24] KILIÇ H,YÜZGEÇ U. Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling[J]. Computers and Industrial Engineering,2019, 132:166-186. [25] ELAZIZ M A,XIONG S,JAYASENA K P N,et al. Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution[J]. Knowledge-Based Systems,2019,169:39-52. [26] ALJARAH I,Al-ZOUBI A M,FARIS H,et al. Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm[J]. Cognitive Computation, 2018,10(3):478-495. [27] TUBA E,STRUMBERGER I,BEZDAN T,et al. Classification and feature selection method for medical datasets by brain storm optimization algorithm and support vector machine[J]. Procedia Computer Science,2019,162:307-315. [28] 孙广路, 宋智超, 刘金来, 等. 基于最大信息系数和近似马尔科夫毯的特征选择方法[J]. 自动化学报,2017,43(5):795-805. (SUN G L,SONG Z C,LIU J L,et al. Feature selection method based on maximum information coefficient and approximate Markov blanket[J]. Acta Automatica Sinica,2017,43(5):795-805.) [29] DUA D,GRAFF C. UCI Machine learning repository[EB/OL].[2019-12-08]. http://archive.ics.uci.edu/ml. |