期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于混合机制的深度神经网络压缩算法
赵旭剑, 李杭霖
《计算机应用》唯一官方网站    2023, 43 (9): 2686-2691.   DOI: 10.11772/j.issn.1001-9081.2022091392
摘要317)   HTML19)    PDF (2917KB)(237)    收藏

近年来人工智能(AI)应用飞速发展,嵌入式设备与移动设备等有限资源设备对深度神经网络(DNN)的需求急剧增加。如何在不影响DNN效果的基础上对神经网络进行压缩具有极大理论与现实意义,也是当下深度学习的热门研究话题。首先,针对DNN因模型大、计算量大而难以移植至移动设备等有限资源设备的问题,深入分析已有DNN压缩算法在内存占用、运行速度及压缩效果等方面的实验性能,从而挖掘DNN压缩算法的影响要素;然后,设计学生网络和教师网络组成的知识迁移结构,融合知识蒸馏、结构设计、网络剪枝和参数量化机制,提出基于混合机制的DNN优化压缩算法。在mini-ImageNet数据集上以AlexNet为Benchmark,进行实验比较与分析。实验结果表明,所提算法在压缩结果的准确率降低6.3%的情况下,使压缩后的AlexNet的容量减小98.5%,验证了所提算法的有效性。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 有序规范实数对多相似度 K最近邻分类算法
崔昊阳, 张晖, 周雷, 杨春明, 李波, 赵旭剑
《计算机应用》唯一官方网站    2023, 43 (9): 2673-2678.   DOI: 10.11772/j.issn.1001-9081.2022091376
摘要342)   HTML19)    PDF (1618KB)(150)    收藏

针对最近邻分类算法性能受到所采用的相似度或距离度量方法影响大,且难以选择最优的相似度或距离度量方法的问题,提出一种采用多相似度的基于有序规范实数对的K最近邻分类算法(OPNs-KNN)。首先,在机器学习领域中引入有序规范实数对(OPN)这一新的数学理论,利用多种相似度或距离度量方法将训练集和测试集中所有样本全部转换为OPN,使每个OPN均包含不同的相似度信息;然后再通过改进的最近邻算法对OPN进行分类,实现不同相似度或距离度量方法的结合与互补,从而提高分类性能。实验结果表明,在Iris、seeds等数据集上与距离加权K近邻规则(WKNN)等6种最近邻分类的改进算法相比,OPNs-KNN的分类准确率提高了0.29~15.28个百分点,验证了所提算法能大幅提升分类的性能。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 融合社会影响力和时间分布的微博关键事件抽取方法
赵旭剑, 王崇伟, 王俊力
《计算机应用》唯一官方网站    2022, 42 (9): 2667-2673.   DOI: 10.11772/j.issn.1001-9081.2021071330
摘要344)   HTML14)    PDF (2009KB)(270)    收藏

针对现有微博事件抽取方法由于基于事件的内容特征,而忽略事件本身的社会属性与时间特征之间的关系,进而无法识别微博热点传播过程中关键事件的问题,提出了一种融合社会影响力和时间分布的微博关键事件抽取方法。首先通过建模社会影响力来刻画微博事件的重要性,然后融合微博事件演化过程中的时间特性以捕获事件在不同时间分布下的差异,最后抽取出不同时间分布下的微博关键事件。在真实数据集上的实验结果表明,所提方法能有效抽取微博热点中的关键事件,较随机选择、词频-逆文本频率(TF-IDF)、最小权重支配集以及度与聚集系数这四种方法在事件集的完整性指标ROUGE-1上在数据集1上分别提升了21%、18%、26%以及30%,在数据集2上分别提升了14%、2%、21%以及23%,抽取效果优于传统方法。

图表 | 参考文献 | 相关文章 | 多维度评价
4. 基于图卷积网络的微博新闻故事线抽取方法
赵旭剑, 王崇伟
《计算机应用》唯一官方网站    2021, 41 (11): 3139-3144.   DOI: 10.11772/j.issn.1001-9081.2021030451
摘要520)   HTML39)    PDF (860KB)(372)    收藏

微博作为人们获取和传播新闻事件的主要平台,隐藏着丰富的事件信息。从微博数据中抽取故事线能为用户提供一种直观的方式来准确理解事件演化,然而微博数据稀疏和上下文缺乏的特点为故事线抽取带来了挑战。因此,通过两个连续的任务从微博数据中自动抽取故事线:1)基于微博传播影响力对事件进行建模,并提取出首要事件;2)基于事件特征建立异构事件图,提出事件图卷积网络(E-GCN)模型来提升对事件间隐式关系的学习能力,从而实现事件的故事分支预测并链接事件。在真实数据集上从故事分支和故事线两个角度进行评测,结果表明所提方法在故事分支生成测评中,相较于贝叶斯模型、斯坦纳树和故事森林在F1值上,在Dataset1上分别高出28个百分点、20个百分点和27个百分点,在Dataset2上分别高出19个百分点、12个百分点和22个百分点;而在故事线抽取评测中,相较于故事时间线、斯坦纳树和故事森林在正确的边准确率上,在Dataset1上分别高出33个百分点、23个百分点和17个百分点,在Dataset2上分别高出12个百分点、3个百分点和9个百分点。

图表 | 参考文献 | 相关文章 | 多维度评价
5. 基于循环一致性对抗网络的数码迷彩伪装生成方法
滕旭, 张晖, 杨春明, 赵旭剑, 李波
《计算机应用》唯一官方网站    2020, 40 (2): 566-570.   DOI: 10.11772/j.issn.1001-9081.2019091625
摘要689)   HTML9)    PDF (5080KB)(537)    收藏

针对传统的数码迷彩生成方法无法根据背景实时生成数码迷彩的问题,提出一种基于循环一致性对抗网络的数码迷彩生成方法。首先,使用密集连接卷积网络提取图像特征,将学习到的数码迷彩特征映射到背景图像中;其次,加入颜色保持损失来提高数码迷彩的生成质量,保证生成的数码迷彩与周围的背景颜色相一致;最后,在判别器中加入自归一化神经网络以提高模型对噪声的鲁棒性。由于缺乏数码迷彩伪装效果的客观评价标准,采用边缘检测算法与结构相似性(SSIM)算法对生成的数码迷彩的伪装效果进行评估。实验结果表明,该方法在自制数据集上生成的数码迷彩伪装的SSIM得分比已有算法的得分降低了30%以上,验证了它在数码迷彩生成任务上的有效性。

图表 | 参考文献 | 相关文章 | 多维度评价
6. 规则半自动学习的概率软逻辑推理模型
张嘉, 张晖, 赵旭剑, 杨春明, 李波
计算机应用    2018, 38 (11): 3144-3149.   DOI: 10.11772/j.issn.1001-9081.2018041308
摘要752)      PDF (1047KB)(653)    收藏
概率软逻辑(PSL)作为一种基于声明式规则的概率模型,具有极强的扩展性和多领域适应性,目前为止,它需要人为给出大量的常识和领域知识作为规则确立的先决条件,这些知识的获取往往非常昂贵并且其中包含的不正确的信息可能会影响推理的正确性。为了缓解这种困境,将C5.0算法和概率软逻辑相结合,让数据和知识共同驱动推理模型,提出了一种规则半自动学习方法。该方法利用C5.0算法提取规则,再辅以人工规则和优化调节后的规则作为改进的概率软逻辑输入。实验结果表明,在学生成绩预测问题上所提方法比C5.0算法和没有规则学习的概率软逻辑具有更高的精度;和纯手工定义规则的方法相比,所提方法能大幅降低人工成本;和贝叶斯网络(BN)、支持向量机(SVM)等算法相比,该方法也表现出不错的效果。
参考文献 | 相关文章 | 多维度评价
7. 面向产品属性的用户情感模型
贾闻俊, 张晖, 杨春明, 赵旭剑, 李波
计算机应用    2016, 36 (1): 175-180.   DOI: 10.11772/j.issn.1001-9081.2016.01.0175
摘要836)      PDF (903KB)(488)    收藏
传统情感模型在分析商品评论中的用户情感时面临两个主要问题:1)缺乏针对产品属性的细粒度情感分析;2)自动提取的产品属性其数量须提前确定。针对上述问题,提出了一种细粒度的面向产品属性的用户情感模型(USM)。首先,利用分层狄利克雷过程(HDP)将名词实体聚类形成产品属性并自动获取其数量;然后,结合产品属性中名词实体的权重和评价短语以及情感词典作为先验,利用潜在狄利克雷分布(LDA)对产品属性进行情感分类。实验结果表明,该模型具有较高的情感分类准确率,情感分类平均准确率达87%。该模型与传统的情感模型相比在抽取产品属性和评价短语的情感分类上具有较高的准确率。
参考文献 | 相关文章 | 多维度评价