《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (11): 3139-3144.DOI: 10.11772/j.issn.1001-9081.2021030451
摘要:
微博作为人们获取和传播新闻事件的主要平台,隐藏着丰富的事件信息。从微博数据中抽取故事线能为用户提供一种直观的方式来准确理解事件演化,然而微博数据稀疏和上下文缺乏的特点为故事线抽取带来了挑战。因此,通过两个连续的任务从微博数据中自动抽取故事线:1)基于微博传播影响力对事件进行建模,并提取出首要事件;2)基于事件特征建立异构事件图,提出事件图卷积网络(E-GCN)模型来提升对事件间隐式关系的学习能力,从而实现事件的故事分支预测并链接事件。在真实数据集上从故事分支和故事线两个角度进行评测,结果表明所提方法在故事分支生成测评中,相较于贝叶斯模型、斯坦纳树和故事森林在F1值上,在Dataset1上分别高出28个百分点、20个百分点和27个百分点,在Dataset2上分别高出19个百分点、12个百分点和22个百分点;而在故事线抽取评测中,相较于故事时间线、斯坦纳树和故事森林在正确的边准确率上,在Dataset1上分别高出33个百分点、23个百分点和17个百分点,在Dataset2上分别高出12个百分点、3个百分点和9个百分点。
中图分类号: