期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 面向车路协同的路侧交通目标检测模型及部署
王泉, 曹心雨, 陈祺东
《计算机应用》唯一官方网站    2025, 45 (3): 1016-1024.   DOI: 10.11772/j.issn.1001-9081.2024040424
摘要38)   HTML22)    PDF (4790KB)(23)    收藏

车路协同旨在通过信息交换和协作实现智能高效的交通管理,其中高精度、轻量化且易于部署的路侧视角下的车辆与行人检测至关重要。因此,提出基于改进YOLOv8的轻量化交通目标检测模型。首先,引入FasterNet中的FasterBlock替换原始C2f中的某些瓶颈组件,以减少浮点运算量(GFLOPs)和参数量,降低整体模型的复杂性;其次,在模型的颈部网络采用兼顾速度和精度的GSConv(Group Shuffle Convolution)替代原有的卷积核,并引入SlimNeck特征融合模块,使每个特征层能够同时考虑深层特征的语义信息和浅层特征的细节;再次,使用MPDIoU(Minimum Point Distance based Intersection over Union)替换原有的损失函数,以提高模型的边界框回归性能;最后,通过通道剪枝修剪模型网络中的冗余连接,以减小模型规模并提高检测速度。实验结果表明,经过改进和剪枝的模型与原始YOLOv8s相比,精度提升了1.0个百分点,平均精度均值(mAP)提升了1.2个百分点,计算量和参数量分别降低了70.1%和69.4%。并且,在边缘设备Atlas 200I DK A2(算力4 TOPS,功耗9 W)的条件下,所提模型达到了58.03 frame/s的检测速度。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 求解多目标社区发现问题的离散化随机漂移粒子群优化算法
李萍, 汪芬, 陈祺东, 孙俊
计算机应用    2021, 41 (3): 803-811.   DOI: 10.11772/j.issn.1001-9081.2020060800
摘要400)      PDF (1095KB)(554)    收藏
针对求解复杂网络的多目标社区发现问题,提出了一种离散化随机漂移粒子群优化(DRDPSO)算法。首先,通过对社区进行随机化编码操作和针对随机漂移算法的离散化操作,来改善局部网络结构并逐渐增强全局模块度值;其次,根据核K均值(KKM)和比例割(RC)两个目标函数来控制网络中的社区规模、缓解模块度分辨率限制;最后,根据多目标求解策略逐步更新Pareto非劣解集,从Pareto非劣解集选取满足需求的目标社区结构。为了验证所提算法的有效性,将DRDPSO算法与其他社区发现算法在三种具有10个不同参数设置的生成网络及三种真实网络上进行对比实验,并采用两个最佳社区评价指标对各算法获得的社区发现结果进行对比分析。实验结果表明,使用DRDPSO算法求解复杂网络的多目标社区发现问题时,获得的社区发现评价指标(归一化互信息和模块度)最高的概率达到95%以上。可见DRDPSO算法在真实网络进行应用能进一步地提高网络社区划分的精确度和鲁棒性。
参考文献 | 相关文章 | 多维度评价
3. 变分布的量子行为粒子群优化算法求解工程约束优化问题
施晓倩, 陈祺东, 孙俊, 冒钟杰
计算机应用    2020, 40 (5): 1382-1388.   DOI: 10.11772/j.issn.1001-9081.2019091577
摘要484)      PDF (704KB)(428)    收藏

针对工程形状设计领域中带有多个约束条件的非线性设计优化问题,提出了一种自适应的基于高斯分布的量子行为粒子群优化(AG-QPSO)算法。通过自适应地调整高斯分布,AG-QPSO算法能够在搜索的初始阶段有很强的全局搜索能力,随着搜索过程的进行,算法的局部搜索能力逐渐增强,从而满足了算法在搜索过程不同阶段的需要。为了验证算法的有效性,在压力容器和张弦设计问题这两个工程约束优化问题上进行50轮独立实验。实验结果表明,在满足所有约束条件的情况下,AG-QPSO算法在压力容器设计问题上取得了5 890.931 5的平均解和5 885.332 8的最优解,在张弦设计问题上取得了0.010 96的平均解和0.010 96的最优解,远优于标准粒子群优化(PSO)算法、具有量子行为的粒子群优化(QPSO)算法和高斯量子行为粒子群(G-QPSO)算法等现有的算法的结果,同时AG-QPSO算法取得的结果的方差较小,说明该算法具有很好的鲁棒性。

参考文献 | 相关文章 | 多维度评价