1 KENNEDY J , EBERHART R . Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995:1942-1948.
2 SUN J , XU W , FENG B . A global search strategy of quantum-behaved particle swarm optimization[C]// Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. Piscataway: IEEE, 2004:111-116.
3 SUN J , WU X , PALADE V , et al . Random drift particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Machine Learning, 2015, 101(1/2/3):345-376.
4 ZHOU J , YANG J , LIN L , et al . A local best particle swarm optimization based on crown jewel defense strategy[J]. International Journal of Swarm Intelligence Research, 2015, 6(1):41-63.
5 KENNEDY J . Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[C]// Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1931-1938.
6 KENNEDY J , MENDES R . Population structure and particle swarm performance[C]// Proceedings of the 2002 Congress on Evolutionary Computation. Piscataway: IEEE, 2002: 1671-1676.
7 LANGDON W B , POLI R . Evolving problems to learn about particle swarm and other optimisers[C]// Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2005: 81-88.
8 CLERC M . Stagnation analysis in particle swarm optimization or what happens when nothing happens[EB/OL]. [2019-03-22].http://clerc.maurice.free.fr/pso/.
9 LING S H , IU H H C, LEUNG F H F , et al . Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging[J]. IEEE Transactions on Industry Electronics, 2008, 55(9):3447-3460.
10 SANTOS COELHO L DOS , HERRERA B M . Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo-yo motion system[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6):3234-3245.
11 LI W , ZHU K . Research on DCW-PSO algorithm and its application in intelligent transportation systems[C]// Proceedings of the 5th International Conference on Natural Computation. Piscataway: IEEE, 2009:393-397.
12 OU X, LIU Y , ZHAO Y . PSO based UAV online path planning algorithms[C]// Proceedings of the 2017 International Conference on Automation, Control and Robots. New York: ACM, 2017: 41-45.
13 KACENJAR S , ZOOK M , BALINT M . PSO-based methods for medical image registration and change assessment of pigmented skin[C]// Proceedings of SPIE 7870, Image Processing: Algorithms and Systems. Bellingham, WA: SPIE, 2011: No.7870C.
14 ABDAR M , WIJAYANINGRUM V N , HUSSAIN S , et al . IAPSO-AIRS: a novel improved machine learning-based system for wart disease treatment[J]. Journal of Medical Systems, 2019, 43(7): No.220.
15 PLAWIAK P , ACHARYA U R . Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals[J]. Neural Computing and Applications, 2019: 1-25.
16 KSIAZEK W , ABDAR M , ACHARYA U R , et al . A novel machine learning approach for early detection of hepatocellular carcinoma patients[J]. Cognitive Systems Research, 2019, 54: 116-127.
17 MICHALEWICZ Z . Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation, 1996, 4(1):1-32.
18 PARSOPOULOS K E , VRAHATIS M N . Particle swarm optimization method for constrained optimization problems[M]// Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies. Amsterdam: IOS Press, 2002: 214-220.
19 HU X , EBERHART R . Solving constrained nonlinear optimization problems with particle swarm optimization[EB/OL].[2019-05-20]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.6041&rep=rep1&type=pdf.
20 SUN J , PALADE V , WU X , et al . Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization[J]. IEEE Transactions on Industrial Informatics, 2014, 10(1):222-232.
21 KHAMSAWANG S , WANNAKARN P , JIRIWIBHAKORN S . Hybrid PSO-DE for solving the economic dispatch problem with generator constraints[C]// Proceedings of the 2nd International Conference on Computer and Automation Engineering. Piscataway: IEEE, 2010: 135-139.
22 GARG H . A hybrid PSO-GA algorithm for constrained optimization problems[J]. Applied Mathematics and Computation, 2016, 274:292-305.
23 GUEDRIA N B . Improved accelerated PSO algorithm for mechanical engineering optimization problems[J]. Applied Soft Computing, 2016, 40: 455-467.
24 韩红桂,卢薇,乔俊飞 . 一种基于种群多样性的粒子群优化算法设计及应用[J]. 信息与控制, 2017, 46(6):677-684. (HAN H G, LU W, QIAO J F. Design and application of particle swarm optimization algorithm based on population diversity[J]. Information and Control, 2017, 46(6):677-684.)
25 饶兴华,王文格,胡旭 . 多样性反馈与控制的粒子群优化算法[J]. 计算机应用, 2014, 34(2):506-509, 513. (RAO X H, WANG W G, HU X. Diversity feedback and control based particle swarm optimization algorithm[J]. Journal of Computer Applications, 2014, 34(2):506-509, 513.)
26 HE Q , WANG L . An effective co-evolutionary particle swarm optimization for constrained engineering design problems[J]. Engineering Applications of Artificial Intelligence, 2007, 20(1):89-99.
27 PREMALATHA K , NATARAJAN A M . Hybrid PSO and GA for global maximization[J]. International Journal of Open Problems in Computer Science and Mathematics, 2009, 2(4):597-608.
28 SANTOS COELHO L DOS . Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems[J]. Expert Systems with Applications, 2010, 37(2):1676-1683.
29 SANDGREN E . Nonlinear integer and discrete programming in mechanical design optimization[J]. Journal of Mechanical Design, 1990, 112(2): 223-229.
30 ZHANG C , WANG H P . Mixed-discrete nonlinear optimization with simulated annealing[J]. Engineering Optimization, 1993, 21(4):277-291.
31 CAO Y , WU Q . A mixed variable evolutionary programming for optimisation of mechanical design[J]. Engineering Intelligent Systems for Electrical Engineering and Communications, 1999, 7(2): 77-82.
32 DEB K . GeneAS: a robust optimal design technique for mechanical component design[M]// DASGUPTA D, MICHALEWICZ Z. Evolutionary Algorithms in Engineering Applications. Berlin: Springer, 1997: 497-514.
33 BELEGUNDU A D , ARORA J S . A study of mathematical programming methods for structural optimization. part I: theory[J]. International Journal for Numerical Methods in Engineering, 1985, 21(9):1583-1599.
34 COELLO C A C . Use of a self-adaptive penalty approach for engineering optimization problems[J]. Computers in Industry, 2000,41(2): 113-127.
35 ARORA J S . Introduction to Optimum Design[M].2nd ed. San Diego, CA: Elsevier Academical Press, 2004:134-147.
36 RAY T, SAINI P . Engineering design optimization using a swarm with an intelligent information sharing among individuals[J]. Engineering Optimization, 2001, 33(6):735-748.
37 RAY T, LIEW K M . Society and civilization: an optimization algorithm based on the simulation of social behavior[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(4):386-396.
38 张庆科 . 粒子群优化算法及差分进化算法研究[D]. 济南:山东大学, 2017:106-107. (ZHANG Q K. Research on particle swarm optimization and differential evolution algorithms[D]. Jinan: Shandong University, 2017:106-107. |