期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于图辅助学习的会话推荐
唐廷杰, 黄佳进, 秦进
《计算机应用》唯一官方网站    2024, 44 (9): 2711-2718.   DOI: 10.11772/j.issn.1001-9081.2023091257
摘要170)   HTML7)    PDF (1786KB)(110)    收藏

针对现有的自监督对比任务未能充分利用原始数据中的丰富语义以及缺乏通用性的问题,提出一种基于图辅助学习的会话推荐(SR-GAL)模型。首先,在图神经网络(GNN)的基础上引入具有表示一致性(RC)的编码通道,从原始数据中挖掘更有价值的自监督信号;其次,为了充分利用这些自监督信号,设计了与目标任务关系紧密的预测性辅助任务和约束性辅助任务;最后,开发了一个简单且与GNN模型无关的辅助学习框架,将两个辅助任务与推荐任务统一起来,从而提高GNN模型的推荐性能。与次优的对比模型CGSNet(Contrastive Graph Self-attention Network)相比,在Diginetica数据集上,所提模型的精确率P@20和平均倒数排名MRR@20提升了0.58%和1.61%;在Tmall数据集上,所提的模型的P@20和MRR@20分别提升了12.65%和8.41%,验证了该模型的有效性。在多个真实数据集上的实验结果表明,SR-GAL模型优于较先进的模型,并且具有良好的可扩展性和通用性。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于图共现增强多层感知机的会话推荐
唐廷杰, 黄佳进, 秦进, 陆辉
《计算机应用》唯一官方网站    2024, 44 (8): 2357-2364.   DOI: 10.11772/j.issn.1001-9081.2023081063
摘要282)   HTML11)    PDF (1743KB)(168)    收藏

针对多层感知机(MLP)架构无法捕获会话序列上下文中的共现关系的问题,提出了一种基于图共现增强MLP的会话推荐模型GCE-MLP。首先,利用MLP架构捕获会话序列的顺序依赖关系,同时通过共现关系学习层获得序列上下文中的共现关系,并通过信息融合模块得到会话表示;其次,设计了特定的特征选择层,旨在扩大不同关系学习层输入特征的差异性;最后,通过噪声对比任务最大化两种关系表征之间的互信息,进一步增强对会话兴趣的表征学习。在多个真实数据集上的实验结果表明GCE-MLP的推荐性能优于目前主流的模型,验证了该模型的有效性。与最优的MLP架构模型FMLP-Rec(Filter-enhanced MLP for Recommendation)相比,在Diginetica数据集上,P@20最高达到了54.08%,MRR@20最高达到了18.87%,分别提升了2.14和1.43个百分点;在Yoochoose数据集上,P@20最高达到了71.77%,MRR@20最高达到了31.78%,分别提升了0.48和1.77个百分点。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 基于度中心性的认知特征选择方法
张笑非, 杨阳, 黄佳进, 钟宁
计算机应用    2021, 41 (9): 2767-2772.   DOI: 10.11772/j.issn.1001-9081.2020111794
摘要307)      PDF (2920KB)(638)    收藏
针对大脑图谱认知特征选择的不确定性提出了基于度中心性的认知特征选择方法(DC-CFSM)。首先,基于大脑图谱构建认知实验任务中被试的脑功能网络(FBN),并计算得到FBN每个兴趣点(ROI)的度中心性(DC);其次,统计对比被试相同皮质兴趣点在执行认知任务时不同认知状态间的差异显著性并对其进行排序;最后,根据排序后的ROI计算人脑认知体系曲线下面积(HBCA-AUC)值,并评估几种认知特征选择方法的性能。在心算认知任务功能核磁共振成像(fMRI)数据上进行的实验中,DC-CFSM在人脑认知体系的任务正相关系统(TPS)、任务负相关系统(TNS)及任务支撑系统(TSS)上得到的HBCA-AUC值分别为0.669 2、0.304 0、0.468 5。与极限树、自适应提升、随机森林、极限梯度提升(XGB)等方法相比,DC-CFSM对TPS的识别率分别提高了22.17%、13.90%、24.32%和37.19%,对TNS的误识率分别减小了20.46%、29.70%、44.96%和33.39%。可见DC-CFSM在大脑图谱认知特征的选择上更能反映人脑认知体系的类别和功能。
参考文献 | 相关文章 | 多维度评价
4. 基于物品的统一推荐模型
邓凯, 黄佳进, 秦进
《计算机应用》唯一官方网站    2020, 40 (2): 530-534.   DOI: 10.11772/j.issn.1001-9081.2019101791
摘要557)   HTML3)    PDF (565KB)(427)    收藏

用户-物品交互模式建模是个性化推荐的一项重要任务,许多推荐系统都基于用户与商品之间存在线性关系的假设,忽略了现实物品与历史物品之间交互的复杂性和非线性,导致这些系统不足以捕捉到用户的复杂决策过程。为此,将一个更有表现力的Top-N推荐系统的物品相似性因子模型解决方法与多层感知机方法相结合,以有效地建模物品之间的高阶关系,捕获更复杂的用户决策。分别在三个数据集MovieLens、Foursquare和ratings_Digital_Music上验证了结合后的效果,并与基准方法MLP、分解物品相似度模型(FISM)、DeepICF和ItemKNN进行对比,结果表明,所提出的方法在推荐性能上有明显的提高。

图表 | 参考文献 | 相关文章 | 多维度评价