《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (8): 2357-2364.DOI: 10.11772/j.issn.1001-9081.2023081063
收稿日期:
2023-08-07
修回日期:
2023-10-10
接受日期:
2023-10-17
发布日期:
2023-12-18
出版日期:
2024-08-10
通讯作者:
黄佳进
作者简介:
唐廷杰(1999—),男,贵州黔东南人,硕士研究生,主要研究方向:推荐系统基金资助:
Tingjie TANG1,2, Jiajin HUANG3(), Jin QIN1,2, Hui LU1,2
Received:
2023-08-07
Revised:
2023-10-10
Accepted:
2023-10-17
Online:
2023-12-18
Published:
2024-08-10
Contact:
Jiajin HUANG
About author:
TANG Tingjie , born in 1999, M. S. candidate. His researchinterests include recommender system.Supported by:
摘要:
针对多层感知机(MLP)架构无法捕获会话序列上下文中的共现关系的问题,提出了一种基于图共现增强MLP的会话推荐模型GCE-MLP。首先,利用MLP架构捕获会话序列的顺序依赖关系,同时通过共现关系学习层获得序列上下文中的共现关系,并通过信息融合模块得到会话表示;其次,设计了特定的特征选择层,旨在扩大不同关系学习层输入特征的差异性;最后,通过噪声对比任务最大化两种关系表征之间的互信息,进一步增强对会话兴趣的表征学习。在多个真实数据集上的实验结果表明GCE-MLP的推荐性能优于目前主流的模型,验证了该模型的有效性。与最优的MLP架构模型FMLP-Rec(Filter-enhanced MLP for Recommendation)相比,在Diginetica数据集上,P@20最高达到了54.08%,MRR@20最高达到了18.87%,分别提升了2.14和1.43个百分点;在Yoochoose数据集上,P@20最高达到了71.77%,MRR@20最高达到了31.78%,分别提升了0.48和1.77个百分点。
中图分类号:
唐廷杰, 黄佳进, 秦进, 陆辉. 基于图共现增强多层感知机的会话推荐[J]. 计算机应用, 2024, 44(8): 2357-2364.
Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron[J]. Journal of Computer Applications, 2024, 44(8): 2357-2364.
数据集 | 点击数 | 训练 会话数 | 测试 会话数 | 项目数 | 会话 平均 长度 | 最大 会话 长度 |
---|---|---|---|---|---|---|
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 | 70 |
Yoochoose 1/64 | 557 248 | 369 859 | 55 898 | 16 766 | 6.16 | 146 |
Nowplaying | 1 367 963 | 825 304 | 89 824 | 60 417 | 7.42 | 30 |
表1 数据集统计信息
Tab. 1 Statistical information of datasets
数据集 | 点击数 | 训练 会话数 | 测试 会话数 | 项目数 | 会话 平均 长度 | 最大 会话 长度 |
---|---|---|---|---|---|---|
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 | 70 |
Yoochoose 1/64 | 557 248 | 369 859 | 55 898 | 16 766 | 6.16 | 146 |
Nowplaying | 1 367 963 | 825 304 | 89 824 | 60 417 | 7.42 | 30 |
方法 | Diginetica | Yoochoose 1/64 | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
POP | 0.89 | 0.20 | 6.71 | 1.65 | 2.28 | 0.86 |
Item-KNN | 35.75 | 11.57 | 51.60 | 21.81 | 15.94 | 4.91 |
FPMC | 22.53 | 6.95 | 45.62 | 15.01 | 7.36 | 2.82 |
GRU4REC | 29.45 | 8.33 | 60.64 | 22.89 | 7.92 | 4.48 |
NARM | 49.70 | 16.17 | 68.32 | 28.63 | 18.59 | 6.93 |
STAMP | 45.64 | 14.32 | 68.74 | 29.67 | 17.66 | 6.88 |
SR-GNN | 51.26 | 17.66 | 70.57 | 30.94 | 17.76 | 7.49 |
TAGNN | 51.53 | 17.90 | 71.02 | 31.12 | 19.02 | 7.82 |
S2-DHCN | 53.66 | 18.51 | 70.74 | 30.16 | 23.50 | 8.18 |
Disen-GNN | 18.99 | 22.22 | ||||
FMLP-Rec | 51.94 | 17.44 | 71.29 | 30.01 | 8.12 | |
GCE-MLP | 54.08 | 71.77 | 31.78 | 22.26 | 8.55 |
表2 不同方法在3个数据集上的性能比较 (%)
Tab. 2 Performance comparison of different methods on three datasets
方法 | Diginetica | Yoochoose 1/64 | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
POP | 0.89 | 0.20 | 6.71 | 1.65 | 2.28 | 0.86 |
Item-KNN | 35.75 | 11.57 | 51.60 | 21.81 | 15.94 | 4.91 |
FPMC | 22.53 | 6.95 | 45.62 | 15.01 | 7.36 | 2.82 |
GRU4REC | 29.45 | 8.33 | 60.64 | 22.89 | 7.92 | 4.48 |
NARM | 49.70 | 16.17 | 68.32 | 28.63 | 18.59 | 6.93 |
STAMP | 45.64 | 14.32 | 68.74 | 29.67 | 17.66 | 6.88 |
SR-GNN | 51.26 | 17.66 | 70.57 | 30.94 | 17.76 | 7.49 |
TAGNN | 51.53 | 17.90 | 71.02 | 31.12 | 19.02 | 7.82 |
S2-DHCN | 53.66 | 18.51 | 70.74 | 30.16 | 23.50 | 8.18 |
Disen-GNN | 18.99 | 22.22 | ||||
FMLP-Rec | 51.94 | 17.44 | 71.29 | 30.01 | 8.12 | |
GCE-MLP | 54.08 | 71.77 | 31.78 | 22.26 | 8.55 |
变体模型 | Diginetica | Yoochoose 1/64 | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
GCE-MLP-C | 53.59 | 18.71 | 71.42 | 31.50 | 22.03 | 8.12 |
GCE-MLP-NCL | 53.14 | 18.60 | 71.20 | 31.54 | 22.15 | 7.94 |
GCE-MLP-SMG | 53.58 | 18.61 | 71.68 | 30.50 | 22.20 | 7.66 |
GCE-MLP-N | 53.79 | 18.67 | 71.44 | 31.54 | 21.98 | 8.48 |
GCE-MLP | 54.08 | 18.87 | 71.77 | 31.78 | 22.26 | 8.55 |
表3 GCE-MLP的变体性能对比 (%)
Tab. 3 Performance comparison of GCE-MLP variants
变体模型 | Diginetica | Yoochoose 1/64 | Nowplaying | |||
---|---|---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
GCE-MLP-C | 53.59 | 18.71 | 71.42 | 31.50 | 22.03 | 8.12 |
GCE-MLP-NCL | 53.14 | 18.60 | 71.20 | 31.54 | 22.15 | 7.94 |
GCE-MLP-SMG | 53.58 | 18.61 | 71.68 | 30.50 | 22.20 | 7.66 |
GCE-MLP-N | 53.79 | 18.67 | 71.44 | 31.54 | 21.98 | 8.48 |
GCE-MLP | 54.08 | 18.87 | 71.77 | 31.78 | 22.26 | 8.55 |
方法 | Diginetica | Yoochoose 1/64 | Nowplaying | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Short | Long | Short | Long | Short | Long | |||||||
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
Disen-GNN | 54.45 | 19.69 | 51.50 | 16.74 | 72.90 | 33.60 | 67.32 | 26.16 | 20.96 | 7.62 | 23.57 | 8.84 |
FMLP-Rec | 53.21 | 18.64 | 49.33 | 15.01 | 72.99 | 32.46 | 67.86 | 25.33 | 21.82 | 7.84 | 24.52 | 8.74 |
GCE-MLP-C | 54.51 | 19.46 | 50.78 | 16.33 | 72.99 | 33.72 | 67.73 | 26.31 | 21.43 | 7.79 | 24.26 | 8.72 |
GCE-MLP-NCL | 54.03 | 19.40 | 50.21 | 16.30 | 72.65 | 33.72 | 67.80 | 26.64 | 21.45 | 7.46 | 24.15 | 8.56 |
GCE-MLP | 54.84 | 19.57 | 51.69 | 16.61 | 73.24 | 33.86 | 68.31 | 26.91 | 21.04 | 8.05 | 24.46 | 9.46 |
表4 使用P@20和MRR@20对不同会话长度的不同方法的性能进行评估 (%)
Tab. 4 Performance of different methods with different session lengths evaluated in terms of P@20 and MRR@20
方法 | Diginetica | Yoochoose 1/64 | Nowplaying | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Short | Long | Short | Long | Short | Long | |||||||
P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | P@20 | MRR@20 | |
Disen-GNN | 54.45 | 19.69 | 51.50 | 16.74 | 72.90 | 33.60 | 67.32 | 26.16 | 20.96 | 7.62 | 23.57 | 8.84 |
FMLP-Rec | 53.21 | 18.64 | 49.33 | 15.01 | 72.99 | 32.46 | 67.86 | 25.33 | 21.82 | 7.84 | 24.52 | 8.74 |
GCE-MLP-C | 54.51 | 19.46 | 50.78 | 16.33 | 72.99 | 33.72 | 67.73 | 26.31 | 21.43 | 7.79 | 24.26 | 8.72 |
GCE-MLP-NCL | 54.03 | 19.40 | 50.21 | 16.30 | 72.65 | 33.72 | 67.80 | 26.64 | 21.45 | 7.46 | 24.15 | 8.56 |
GCE-MLP | 54.84 | 19.57 | 51.69 | 16.61 | 73.24 | 33.86 | 68.31 | 26.91 | 21.04 | 8.05 | 24.46 | 9.46 |
1 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
2 | ZHANG S, YAO L, SUN A, et al. Deep learning based recommender system: a survey and new perspectives [J]. ACM Computing Surveys, 2019, 52(1): 5. |
3 | WANG S, CAO L, WANG Y, et al. A survey on session-based recommender systems [J]. ACM Computing Surveys, 2021, 54(7): 154. |
4 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL].(2015-11-21) [2023-08-05]. . |
5 | LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. |
6 | TAN Y K, XU X, LIU Y. Improved recurrent neural networks for session-based recommendations [C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. |
7 | HIDASI B, KARATZOGLOU A. Recurrent neural networks with top-k gains for session-based recommendations [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 843-852. |
8 | LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1831-1839. |
9 | WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the 32rd AAAI Conference on Artificial Intelligence. Menlo Park:AAAI Press, 2019: 346-353. |
10 | YU F, ZHU Y, LIU Q, et al. TAGNN: target attentive graph neural networks for session-based recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1921-1924. |
11 | CHEN Y-H, HUANG L, WANG C-D, et al. Hybrid-order gated graph neural network for session-based recommendation [J]. IEEE Transactions on Industrial Informatics, 2021, 18(3): 1458-1467. |
12 | 南宁,杨程屹,武志昊.基于多图神经网络的会话感知推荐模型[J]. 计算机应用,2021, 41(2): 330-336. |
NAN N, YANG C Y, WU Z H. Multi-graph neural network-based session perception recommendation model[J]. Journal of Computer Applications, 2021, 41(2): 330-336. | |
13 | 任俊伟,曾诚,肖丝雨,等.基于会话的多粒度图神经网络推荐模型[J].计算机应用,2021, 41(11): 3164-3170. |
REN J W, ZENG C, XIAO S Y, et al. Session-based recommendation model of multi-granular graph neural network[J]. Journal of Computer Applications, 2021, 41(11): 3164-3170. | |
14 | PANG Y, WU L, SHEN Q, et al. Heterogeneous global graph neural networks for personalized session-based recommendation [C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 775-783. |
15 | SHENG Z, ZHANG T, ZHANG Y, et al. Enhanced graph neural network for session-based recommendation [J]. Expert Systems with Applications, 2023, 213: 118887. |
16 | LI A, CHENG Z, LIU F, et al. Disentangled graph neural networks for session-based recommendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7870-7882. |
17 | XU C, ZHAO P, LIU Y, et al. Graph contextualized self-attention network for session-based recommendation [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, San Francisco: IJCAI, 2019: 3940-3946. |
18 | TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer: an all-MLP architecture for vision [EB/OL]. (2021-05-04)[2023-08-05]. . |
19 | TOUVRON H, BOJANOWSKI P, CARON M, et al. ResMLP: feedforward networks for image classification with data-efficient training [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5314-5321. |
20 | ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation [C]// Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022: 2388-2399. |
21 | SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms [C]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295. |
22 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation [C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820. |
23 | WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178. |
24 | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
25 | YU J, YIN H, XIA X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1294-1303. |
26 | LI H, LUO X, YU Q, et al. Session-based recommendation via contrastive learning on heterogeneous graph [C]// Proceedings of the 2021 IEEE International Conference on Big Data. Piscataway: IEEE, 2021: 1077-1082. |
27 | XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4503-4511. |
28 | WANG F, LU X, LYU L. CGSNet: contrastive graph self-attention network for session-based recommendation [J]. Knowledge-Based Systems, 2022, 251: 109282. |
29 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
30 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
31 | ZANGERLE E, PICHL M, GASSLER W, et al. # nowplaying music dataset: extracting listening behavior from Twitter [C]// Proceedings of the 1st International Workshop on Internet-Scale Multimedia Management. New York: ACM, 2014: 21-26. |
[1] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[2] | 唐廷杰, 黄佳进, 秦进. 基于图辅助学习的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2711-2718. |
[3] | 孙明皓, 余瀚, 陈雨青, 陆恺. 基于U形多层感知机网络的地震波初至拾取与反演[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2301-2309. |
[4] | 汪炅, 唐韬韬, 贾彩燕. 无负采样的正样本增强图对比学习推荐方法PAGCL[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1485-1492. |
[5] | 荆智文, 张屿佳, 孙伯廷, 郭浩. 二阶段孪生图卷积神经网络推荐算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 469-476. |
[6] | 仇丽青, 苏小盼. 个性化多层兴趣提取点击率预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3411-3418. |
[7] | 曾蠡, 杨婧如, 黄罡, 景翔, 罗超然. 超图应用方法综述:问题、进展与挑战[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3315-3326. |
[8] | 周北京, 王海荣, 王怡梦, 张丽丝, 马赫. 图谱嵌入传播的推荐方法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3252-3259. |
[9] | 佟威, 何理扬, 李锐, 黄威, 黄振亚, 刘淇. 基于无监督语义哈希的高效相似题检索模型[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 206-216. |
[10] | 徐则林, 杨敏, 陈勐. 融合空间和文本信息的兴趣点类别表征模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2456-2461. |
[11] | 刘源, 董永权, 贾瑞, 杨昊霖. 面向个性化课程推荐的分层分期注意力网络模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2358-2363. |
[12] | 叶坤佩, 熊熙, 丁哲. 基于领域融合和时间权重的招工推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2133-2139. |
[13] | 孙浩, 曹健, 李海生, 毛典辉. 基于改进胶囊网络的会话型推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1043-1049. |
[14] | 孙轩宇, 史艳翠. 融合项目影响力的图神经网络会话推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3689-3696. |
[15] | 党伟超, 程炳阳, 高改梅, 刘春霞. 基于对比超图转换器的会话推荐[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3683-3688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||