Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (9): 2523-2528.DOI: 10.11772/j.issn.1001-9081.2019020317

• Artificial intelligence • Previous Articles     Next Articles

Autonomous obstacle avoidance of unmanned surface vessel based on improved fuzzy algorithm

LIN Zheng, LYU Xiafu   

  1. College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2019-02-26 Revised:2019-04-24 Online:2019-05-14 Published:2019-09-10
  • Supported by:

    This work is partially supported by the National Natural Science Foundation of China (61275077).


林政, 吕霞付   

  1. 重庆邮电大学 自动化学院, 重庆 400065
  • 通讯作者: 林政
  • 作者简介:林政(1995-),男,四川富顺人,硕士研究生,主要研究方向:嵌入式开发、智能机器人;吕霞付(1966-),男,安徽六安人,教授,博士,主要研究方向:仪器仪表、汽车电子。
  • 基金资助:



In order to improve the performance of continuous obstacle avoidance ability of Unmanned Surface Vessel (USV) in unknown and complex environment, a fuzzy algorithm of obstacle avoidance with speed feedback was proposed. The USV utilized laser scanning radar and multi-channel ultrasonic sensors to perceive the surroundings and performed multi-sensor data fusion by grouping and setting the weight of the obstacle information, and the speed of USV was automatically adjusted according to the environmental situation based on fuzzy control. Then a more comprehensive fuzzy control rule table considering all the distribution of obstacles was proposed to enhance the adaptability of USV to complex environments. The experimental results show that the algorithm can make the USV successfully avoid obstacles and optimize the obstacle avoidance path by adjusting the speed through interaction with the environment, and has good feasibility and effectiveness.

Key words: unmanned surface vessel, obstacle avoidance, data fusion, fuzzy control, speed feedback



关键词: 水面无人艇, 避障, 数据融合, 模糊控制, 速度反馈

CLC Number: